Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,833
result(s) for
"Erythrocytes - chemistry"
Sort by:
Architecture of the human erythrocyte ankyrin-1 complex
by
Johnston, Jake D.
,
Noble, Alex J.
,
Kim, Kookjoo
in
101/28
,
631/45/612/1237
,
631/535/1258/1259
2022
The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin–actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.
Cryo-EM structures of human erythrocyte ankyrin-1 complex offer insights into the architecture of the RBC membrane and show how ankyrins can simultaneously recruit different membrane proteins to enable functional organization of membrane transport processes.
Journal Article
The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis
by
van Dommelen, Susan M.
,
van Wijk, Richard
,
Schiffelers, Raymond M.
in
140/58
,
147/3
,
631/1647/2204/1262
2018
Extracellular vesicles (EVs) are widely studied regarding their role in cell-to-cell communication and disease, as well as for applications as biomarkers or drug delivery vehicles. EVs contain membrane and intraluminal proteins, affecting their structure and thereby likely their functioning. Here, we use atomic force microscopy for mechanical characterization of erythrocyte, or red blood cell (RBC), EVs from healthy individuals and from patients with hereditary spherocytosis (HS) due to ankyrin deficiency. While these EVs are packed with proteins, their response to indentation resembles that of fluid liposomes lacking proteins. The bending modulus of RBC EVs of healthy donors is ~15
k
b
T
, similar to the RBC membrane. Surprisingly, whereas RBCs become more rigid in HS, patient EVs have a significantly (~40%) lower bending modulus than donor EVs. These results shed light on the mechanism and effects of EV budding and might explain the reported increase in vesiculation of RBCs in HS patients.
Red blood cell disorders are often accompanied by increased release of extracellular vesicles (EVs), but their structural and mechanical properties are not fully understood. Here, the authors show that red blood cell EVs show liposome-like mechanical features and are softened in blood disorder patients.
Journal Article
Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo
by
Sanchez, Susana A.
,
Gratton, Enrico
,
Tricerri, Maria A.
in
2-Naphthylamine
,
2-Naphthylamine - analogs & derivatives
,
2-Naphthylamine - chemistry
2012
Cellular membranes are heterogeneous in composition, and the prevailing theory holds that the structures responsible for this heterogeneity in vivo are small structures (10-200 nm), sterol- and sphingolipid-enriched, of different sizes, highly dynamic denominated rafts. Rafts are postulated to be platforms, which by sequestering different membrane components can compartmentalize cellular processes and regulate signaling pathways. Despite an enormous effort in this area, the existence of these domains is still under debate due to the characteristics of the structures itself: small in size and highly mobile, which from the technical point of view implies using techniques with high spatial and temporal resolution. In this report we measured rapid fluctuations of the normalized ratio of the emission intensity at two wavelengths of Laurdan, a membrane fluorescent dye sensitive to local membrane packing. We observed generalized polarization fluctuations in the plasma membrane of intact rabbit erythrocytes and Chinese hamster ovary cells that can be explained by the existence of tightly packed micro-domains moving in a more fluid background phase. These structures, which display different lipid packing, have different sizes; they are found in the same cell and in the entire cell population. The small size and characteristic high lipid packing indicate that these micro-domains have properties that have been proposed for lipid rafts.
Journal Article
Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes
by
Machiyama, Hiroaki
,
Tomita, Masaru
,
Arjunan, Satya Nanda Vel
in
Anion Exchange Protein 1, Erythrocyte - chemistry
,
Anion Exchange Protein 1, Erythrocyte - metabolism
,
Cell adhesion & migration
2015
Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.
Journal Article
Single Molecule Studies of the Diffusion of Band 3 in Sickle Cell Erythrocytes
by
Spector, Jeff
,
Kodippili, Gayani C.
,
Ritchie, Ken
in
Analysis
,
Anemia, Sickle Cell - blood
,
Anemia, Sickle Cell - pathology
2016
Sickle cell disease (SCD) is caused by an inherited mutation in hemoglobin that leads to sickle hemoglobin (HbS) polymerization and premature HbS denaturation. Previous publications have shown that HbS denaturation is followed by binding of denatured HbS (a.k.a. hemichromes) to band 3, the consequent clustering of band 3 in the plane of the erythrocyte membrane that in turn promotes binding of autologous antibodies to the clustered band 3, and removal of the antibody-coated erythrocytes from circulation. Although each step of the above process has been individually demonstrated, the fraction of band 3 that is altered by association with denatured HbS has never been determined. For this purpose, we evaluated the lateral diffusion of band 3 in normal cells, reversibly sickled cells (RSC), irreversibly sickled cells (ISC), and hemoglobin SC erythrocytes (HbSC) in order to estimate the fraction of band 3 that was diffusing more slowly due to hemichrome-induced clustering. We labeled fewer than ten band 3 molecules per intact erythrocyte with a quantum dot to avoid perturbing membrane structure and we then monitored band 3 lateral diffusion by single particle tracking. We report here that the size of the slowly diffusing population of band 3 increases in the sequence: normal cells
Journal Article
Life Cycle-Dependent Cytoskeletal Modifications in Plasmodium falciparum Infected Erythrocytes
by
Chong, Alvin G. L.
,
Yin, Jing
,
Lim, Chwee Teck
in
Atomic force microscopy
,
Bioengineering
,
Biology
2013
Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.
Journal Article
Spatial Relationship and Functional Relevance of Three Lipid Domain Populations at the Erythrocyte Surface
by
Dimova, Rumiana
,
Pollet, Hélène
,
Cloos, Anne-Sophie
in
Biomechanical Phenomena
,
Blood
,
Calcium exchanges
2018
Background/Aims: Red blood cells (RBC) have been shown to exhibit stable submicrometric lipid domains enriched in cholesterol (chol), sphingomyelin (SM), phosphatidylcholine (PC) or ganglioside GM1, which represent the four main lipid classes of their outer plasma membrane leaflet. However, whether those lipid domains co-exist at the RBC surface or are spatially related and whether and how they are subjected to reorganization upon RBC deformation are not known. Methods: Using fluorescence and/or confocal microscopy and well-validated probes, we compared these four lipid-enriched domains for their abundance, curvature association, lipid order, temperature dependence, spatial dissociation and sensitivity to RBC mechanical stimulation. Results: Our data suggest that three populations of lipid domains with decreasing abundance coexist at the RBC surface: (i) chol-enriched ones, associated with RBC high curvature areas; (ii) GM1/PC/chol-enriched ones, present in low curvature areas; and (iii) SM/PC/chol-enriched ones, also found in low curvature areas. Whereas chol-enriched domains gather in increased curvature areas upon RBC deformation, low curvature-associated lipid domains increase in abundance either upon calcium influx during RBC deformation (GM1/PC/chol-enriched domains) or upon secondary calcium efflux during RBC shape restoration (SM/PC/chol-enriched domains). Hence, abrogation of these two domain populations is accompanied by a strong impairment of the intracellular calcium balance. Conclusion: Lipid domains could contribute to calcium influx and efflux by controlling the membrane distribution and/or the activity of the mechano-activated ion channel Piezo1 and the calcium pump PMCA. Whether this results from lipid domain biophysical properties, the strength of their anchorage to the underlying cytoskeleton and/or their correspondence with inner plasma membrane leaflet lipids remains to be demonstrated.
Journal Article
The Association Between the Mediterranean Diet and Fatty Acids in Red Blood Cells of Spanish Adolescents
2025
Objective: The Mediterranean diet (MedDiet) is characterized by its emphasis on plant-based foods, olive oil, and fish products, and has been associated with providing relevant fatty acids (FAs) for adolescent physiology. This study aims to investigate the relationship between adherence to the MedDiet and the FA composition of red blood cell (RBC) membranes in an adolescent population. Methods: The current research examines the relationship between MedDiet adherence, assessed using the KIDMED questionnaire, and the composition of RBC membranes, specifically measuring 22 FAs in a cross-sectional analysis of adolescents from two cohorts (mean age = 14.55). Baseline data from 552 participants with complete dietary adherence and FA information were analyzed using multivariable regression models and principal component analysis (PCA) as confirmatory analysis. All regression models were adjusted by age, sex, body mass index, physical activity, maternal education and cohort enrollment. Results: Main results shown that “Good adherence” to the MedDiet was positively associated with omega-3 FAs, including eicosapentaenoic acid (β = 0.34; 95% CI: 0.17, 0.52; p-value < 0.001) and docosahexaenoic acid (β = 0.29; 95% CI: 0.11, 0.46; p-value = 0.001), and inversely associated with specific omega-6 FAs, such as arachidonic acid (β = −0.28; 95% CI: −0.46, −0.11; p-value = 0.002) and adrenic acid (β = −0.19; 95% CI: −0.30, −0.08; p-value < 0.001). PCA identified distinct FA patterns, with “Good adherence” to the MedDiet being associated with an increase in the omega-3 FAs pattern (β = 0.32; 95% CI: 0.14, 0.49; p-value < 0.001). These findings remained robust after multiple test comparisons. Conclusions: This study underscores the potential of the MedDiet to promote optimal RBC FA composition in healthy adolescents, characterized by high levels of omega-3 FAs and reduced levels of arachidonic acid and adrenic acid in RBC membranes.
Journal Article
Phototheranostics Using Erythrocyte-Based Particles
2021
There has been a recent increase in the development of delivery systems based on red blood cells (RBCs) for light-mediated imaging and therapeutic applications. These constructs are able to take advantage of the immune evasion properties of the RBC, while the addition of an optical cargo allows the particles to be activated by light for a number of promising applications. Here, we review some of the common fabrication methods to engineer these constructs. We also present some of the current light-based applications with potential for clinical translation, and offer some insight into future directions in this exciting field.
Journal Article
Structural and functional consequences of reversible lipid asymmetry in living membranes
2020
Maintenance of lipid asymmetry across the two leaflets of the plasma membrane (PM) bilayer is a ubiquitous feature of eukaryotic cells. Loss of this asymmetry has been widely associated with cell death. However, increasing evidence points to the physiological importance of non-apoptotic, transient changes in PM asymmetry. Such transient scrambling events are associated with a range of biological functions, including intercellular communication and intracellular signaling. Thus, regulation of interleaflet lipid distribution in the PM is a broadly important but underappreciated cellular process with key physiological and structural consequences. Here, we compile the mounting evidence revealing multifaceted, functional roles of PM asymmetry and transient loss thereof. We discuss the consequences of reversible asymmetry on PM structure, biophysical properties and interleaflet coupling. We argue that despite widespread recognition of broad aspects of membrane asymmetry, its importance in cell biology demands more in-depth investigation of its features, regulation, and physiological and pathological implications.
The asymmetric distribution of lipids, including cholesterol, in biological membranes established actively by flippases and scramblases has structural, biophysical and functional consequences in cells and implications for communication across membranes.
Journal Article
This website uses cookies to ensure you get the best experience on our website.