Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Eucommia ulmoides leaf"
Sort by:
Effects of dietary eucommia ulmoides leaf extract on growth performance, expression of feeding-related genes, activities of digestive enzymes, antioxidant capacity, immunity and cytokines expression of large yellow croaker (Larimichthys crocea) larvae
A 30-d feeding trial was conducted to investigate effects of dietary eucommia ulmoides leaf extract (ELE) on growth performance, activities of digestive enzymes, antioxidant capacity, immunity, expression of inflammatory factors and feeding-related genes of large yellow croaker larvae. Five micro-diets were formulated with supplementation of 0 g kg−1 (the control), 5 g kg−1 (0·5 %), 10 g kg−1 (1·0 %) and 20 g kg−1 (2·0 %) of ELE, respectively. Results showed that the best growth performance was found in larvae fed the diet with 1·0 % ELE. Furthermore, ELE supplementation significantly increased the npy expression at 1·0 % dosage, while increased ghrelin in larvae at 0·5 % dosages. The activity of leucine aminopeptidase in larvae fed the diet with 1·0 % ELE was significantly higher than the control, while alkaline phosphatase was significantly upregulated in larvae fed the diet with 2·0 % ELE. A clear increase in total antioxidant capacity in larvae fed the diet with 1·0 % ELE was observed, whereas catalase activity was significantly higher in 1·0 % and 2·0 % ELE supplementation compared with the control. Larvae fed the diet with 1·0 % ELE had a significantly higher activities of lysozyme, total nitric oxide synthase and nitric oxide content than the control. Moreover, transcriptional levels of cox-2, il-1β and il-6 were remarkably downregulated by the supplementation of 0·5–1·0 % ELE. This study demonstrated that the supplementation of 1·0 % ELE in diet could increase the growth performance of large yellow croaker larvae probably by promoting expression of feeding-related genes, enhancing antioxidant capacity and immunity and inhibiting expression of inflammatory factors.
Eucommia ulmoides leaf extract alters gut microbiota composition, enhances short‐chain fatty acids production, and ameliorates osteoporosis in the senescence‐accelerated mouse P6 (SAMP6) model
The bark and the leaf of Eucommia ulmoides Oliv. content similar bioactive components, but the leaf of this medically important plant is mostly abandoned. In this study, we revealed that the aqueous extract of E. ulmoides leaf (EUL) can promote the growth of the probiotic Lactobacillus bulgaricus (LB) and inhibit the formation of osteoclast in vitro. This extract was next administrated to senescence‐accelerated mice P6 to evaluate examine its influence on the composition of gut microbiota (GM), short‐chain fatty acids (SCFAs), and osteoporosis (OP). The results showed that supplementation of the EUL aqueous extract to the mouse model: (a) increased bacterial diversity and Firmicutes/Bacteroidetes ratio in the gut, (b) increased SCFAs concentration in the feces and serum, and (c) ameliorated OP based on the results of bone mineral density (BMD), Dual‐energy X‐ray bone scan, and HE staining of distal femur. The aqueous extract of E. ulmoides leaf altered gut microbiota composition, enhanced short‐chain fatty acids production, and ameliorated osteoporosis in the osteoporotic mouse model. This study should promote the future development of EUL as a functional food to treat OP.
Eucommia ulmoides Leaf Extract Ameliorates Steatosis Induced by High-fat Diet in Rats by Increasing Lysosomal Function
The recent discovery that the impairment of autophagic flux in non-alcoholic fatty liver disease (NAFLD) might be a strong determining factor in steatosis suggests the potential of therapeutic control of autophagic flux with natural agents in restoring NAFLD. We investigated the potential of Eucommia ulmoides leaf extract (EUL) to control dyslipidemia in NAFLD. EUL supplementation (200 mg/kg) promoted recovery from high fat diet (HFD)-induced lipid dysmetabolism. This hepatoprotective efficacy was accompanied by suppression of endoplasmic reticulum (ER) stress, enhancing lysosomal functions, and thereby increasing autophagic flux. We found a strong indication that inhibition of the mTOR-ER stress pathway was related to the enhanced autophagic flux. However, the direct antioxidative effect of EUL on cytoprotection cannot be ruled out as a significant contributing factor in NAFLD. Our findings will aid in further elucidating the mechanism of the anti-steatosis activity of EUL and highlight the therapeutic potential of EUL in the treatment of NAFLD.
A method of two-dimensional correlation spectroscopy combined with residual neural network for comparison and differentiation of medicinal plants raw materials superior to traditional machine learning: a case study on Eucommia ulmoides leaves
Background Eucommia ulmoides leaf (EUL), as a medicine and food homology plant, is a high-quality industrial raw material with great development potential for a valuable economic crop. There are many factors affecting the quality of EULs, such as different drying methods and regions. Therefore, quality and safety have received worldwide attention, and there is a trend to identify medicinal plants with artificial intelligence technology. In this study, we attempted to evaluate the comparison and differentiation for different drying methods and geographical traceability of EULs. As a superior strategy, the two-dimensional correlation spectroscopy (2DCOS) was used to directly combined with residual neural network (ResNet) based on Fourier transform near-infrared spectroscopy. Results (1) Each category samples from different regions could be clustered together better than different drying methods through exploratory analysis and hierarchical clustering analysis; (2) A total of 3204 2DCOS images were obtained, synchronous 2DCOS was more suitable for the identification and analysis of EULs compared with asynchronous 2DCOS and integrated 2DCOS; (3) The superior ResNet model about synchronous 2DCOS used to identify different drying method and regions of EULs than the partial least squares discriminant model that the accuracy of train set, test set, and external verification was 100%; (4) The Xinjiang samples was significant differences than others with correlation analysis of 19 climate data and different regions. Conclusions This study verifies the superiority of the ResNet model to identify through this example, which provides a practical reference for related research on other medicinal plants or fungus.
Network Pharmacology Combined with an Experimental Validation Study to Reveal the Effect and Mechanism of Eucommia ulmoides Leaf Polysaccharide against Immunomodulation
In the present study, the immuno-enhancing effect of Eucommia ulmoides leaf polysaccharide (ELP) was investigated in immunosuppressed mice induced by cyclophosphamide (CTX). To evaluate the immune enhancement mechanism of ELP, the immunoregulation effect of ELP was evaluated in vitro and in vivo. ELP is primarily composed of arabinose (26.61%), galacturonic acid (25.1%), galactose (19.35%), rhamnose (16.13%), and a small amount of glucose (12.9%). At 1000~5000 μg·mL−1, ELP could significantly enhance the proliferation and the phagocytosis of macrophages in vitro. Additionally, ELP could protect immune organs, reduce pathological damage, and reverse the decrease in the hematological indices. Moreover, ELP significantly increased the phagocytic index, enhanced the ear swelling response, augmented the production of inflammatory cytokines, and markedly up-regulated the expression of IL-1β, IL-6, and TNF-α mRNA levels. Furthermore, ELP improved phosphorylated p38, ERK1/2, and JNK levels, suggesting that MAPKs might be involved in immunomodulatory effects. The results provide a theoretical foundation for exploring the immune modulation function of ELP as a functional food.
Dietary Supplementation with Eucommia ulmoides Leaf Extract Improved the Intestinal Antioxidant Capacity, Immune Response, and Disease Resistance against Streptococcus agalactiae in Genetically Improved Farmed Tilapia (GIFT; Oreochromis niloticus)
A 7-week rearing trial was designed to investigate the effects of Eucommia ulmoides leaf extract (ELE) on growth performance, body composition, antioxidant capacity, immune response, and disease susceptibility of diet-fed GIFT. The results showed that dietary ELE did not affect growth performance or whole-body composition (p > 0.05). Compared with the control group, plasma ALB contents increased in the 0.06% dietary ELE group (p < 0.05), and plasma ALT and AST activities decreased in the 0.08% dietary ELE group (p < 0.05). In terms of antioxidants, compared with GIFT fed the control diet, 0.06% dietary ELE upregulated the mRNA expression levels of Nrf2 pathway-related antioxidant genes, including CAT and SOD (p < 0.05), and 0.06% and 0.08% dietary ELE upregulated the mRNA levels of Hsp70 (p < 0.05). In terms of immunity, 0.06% dietary ELE suppressed intestinal TLR2, MyD88, and NF-κB mRNA levels (p < 0.05). Moreover, the mRNA levels of the anti-inflammatory cytokines TGF-β and IL-10 were upregulated by supplementation with 0.04% and 0.06% dietary ELE (p < 0.05). In terms of apoptosis, 0.06% and 0.08% ELE significantly downregulated the expression levels of FADD mRNA (p < 0.05). Finally, the challenge experiment with S. agalactiae showed that 0.06% dietary ELE could inhibit bacterial infection, and significantly improve the survival rate of GIFT (p < 0.05). This study demonstrated that the supplementation of 0.04–0.06% ELE in diet could promote intestinal antioxidant capacity, enhance the immune response and ultimately improve the disease resistance of GIFT against Streptococcus agalactiae.
Effects of Eucommia ulmoides Leaf Extract on the Technological Quality, Protein Oxidation, and Lipid Oxidation of Cooked Pork Sausage During Refrigerated Storage
The present research work was based on evaluating the effects of Eucommia ulmoides leaf extract (EULE) on the technological quality and protein oxidation of cooked pork sausage during refrigerated storage. Sausages were manufactured with different levels of EULE (0, 0.15, and 0.3 g/kg) and stored at 4 °C for 3, 20, and 40 d, respectively. Quality attributes including cooking loss, texture, and color were evaluated, and the total carbonyl and total sulfhydryl as well as the specific markers α-aminoadipic acid semialdehyde (AAS) and lysinonorleucine (LNL) were analyzed for protein oxidation. The results revealed that the inclusion of EULE exhibited effectiveness in reducing the formation of protein carbonyls, particularly AAS and LNL, while inhibiting the loss of total sulfhydryl. Nevertheless, EULE increased the cooking loss, hardness, and chewiness of the sausages compared to the control group. These findings demonstrated that EULE could be considered a potential natural antioxidant for use in sausage production.
Effects of Dietary Eucommia ulmoides Leaf Extract on Growth, Muscle Composition, Hepatopancreas Histology, Immune Responses and Microcystin-LR Resistance of Juvenile Red Claw Crayfish (Cherax quadricarinatus)
The objective of the present study was to investigate the effects of different doses of dietary Eucommia ulmoides leaf extract (ELE) on juvenile red claw crayfish (Cherax quadricarinatus). A total number of 720 red claw crayfish (initial body weight of 0.24 ± 0.01 g) were randomly assigned to six groups and fed diets containing 0 (Diet 1), 0.5 (Diet 2), 1 (Diet 3), 2 (Diet 4), 4 (Diet 5) and 10 (Diet 6) g dry weight (dw) ELE kg (dw)−1 diets for eight weeks and challenged with microcystin-LR stress. The results indicated that dietary supplementation with 1–2 g dw ELE kg (dw)−1 diet could significantly improve the weight gain rate (WGR) and specific growth rate (SGR) of crayfish. Muscle crude protein contents of crayfish fed Diet 2, Diet 3, and Diet 4 were significantly higher than those of the control group. Compared with the control group, dietary ELE could increase total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GPx), acid phosphatase (ACP), alkaline phosphatase (AKP), and phenoloxidase (PO) activities and decrease malondialdehyde (MDA) level of crayfish. Dietary ELE significantly increased the relative expression levels of SOD, thioredoxin 1 (TRX1), GPx, selenium-dependent glutathione peroxidase (Se-GPx), cytochrome P450 (CYP450), anti-lipopolysaccharide factor (ALF) and C-type lysozyme (C-LZM) mRNA of crayfish compared with the control group during the feeding experiment. When subjected to MC-LR stress for 48 h, the mRNA expression levels of SOD, GPx, Se-GPx, glutathione-s-transferase 1 (GST1), ALF, hemocyanin (HEM), and C-LZM in the hepatopancreas could be improved to varying degrees compared with the Diet 1. Supplementation of 1–2 g dw ELE kg (dw)−1 diet could improve the survival rate (SR) of crayfish under MC-LR stress. These results indicated that dietary ELE (1–2 g dw ELE kg (dw)−1 diet) could improve the growth performance, muscle protein, and non-specific immune response and increase the SR of crayfish under MC-LR stress by regulating the mRNA expression levels of the immune- and antioxidant-related genes.
Comparative Analysis of the Effect of Dietary Supplementation with Fermented and Water-Extracted Leaf Extracts of Eucommia ulmoides on Egg Production and Egg Nutrition
Although the water extract of Eucommia ulmoides leaf (WEE) promotes egg laying in hens, its palatability is poor. To improve the palatability of E. ulmoides leaf, probiotic fermentation was used, and fermented extract E. ulmoides leaf (FEE) was prepared using Lactiplantibacillus plantarum. The safety of FEE was investigated using a long-term toxicity test, and no oxidative damage, inflammatory reactions, or histological lesions were observed in the experimental rats receiving dietary supplementation of FEE at 200 mg/kg, suggesting that FEE is suitable for long-term feeding. Subsequently, dietary supplementation of FEE (group C) in comparison with dietary supplementation of WEE (group B), as well as a control (group A), was applied in the hen industry. Laying performance, egg quality, egg nutrition, egg flavor, and the gut microbiome were analyzed comparatively. Interestingly, the laying rate was observed to be four percentage points higher with dietary supplementation of FEE at 200 mg/kg compared with the control and two percentage points higher compared with the dietary addition of WEE at the same dosage. Simultaneously, a slight upregulation in daily feed consumption was determined in the FEE-supplemented group compared with the blank control and the WEE-supplemented group, indicating that the inclusion of FEE stimulated the hens’ appetite. Moreover, variations in egg amino acids, fatty acids, and volatile components were obtained with either dietary addition, FEE or WEE, implying that dietary supplementation of the fermented and water-extracted E. ulmoides leaf extracts contributed to egg flavor change. Furthermore, variations in the gut microbiota were mediated by FEE, increasing the relative abundance of the genus Lactobacillus. These alterations in gut microbiota were tightly related to improved laying performance and egg flavor changes. Our results indicate that FEE is a better alternative feed additive in the hen industry than WEE.