Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
540
result(s) for
"Eukaryotic Initiation Factor-4E"
Sort by:
Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation
2015
Interferon-γ (IFN-γ) primes macrophages to undergo proinflammatory activation. Ivashkiv and colleagues detail the translational and metabolic program triggered in human macrophages after IFN-γ treatment.
Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ–mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.
Journal Article
MNK2 deficiency potentiates β-cell regeneration via translational regulation
2022
Regenerating pancreatic β-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of β-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased β-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and β-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in β-cell regeneration, a role that warrants further investigation in diabetes.MNK2 was identified as the target of a small molecule named CID661578 that can stimulate pancreatic β-cell generation in zebrafish, pig and human organoids. CID661578 prevents MNK2 from binding to eIF4G in the translation initiation complex.
Journal Article
Biochemical analysis of human eIF4E-DCP2 interaction: Implications for the relationship between translation initiation and decapping
2025
All eukaryotic mRNAs bear a 7-methylguanosine cap on their 5’ end. The 5’ cap enables mRNA translation by binding directly to eIF4E; which further recruits other factors and the 40S ribosome. Additionally, the 5’ cap maintains transcript stability; removal of the cap by the enzyme Dcp2 is necessary to degrade the mRNA. An a priori conclusion, therefore, has been that cap binding by eIF4E and DCP2 are antithetical to each other as both need access to the same substrate, i.e., the 5’ cap. In this study, we purified native full-length human eIF4E and Dcp2 and utilize biophysical and biochemical approaches to examine the in vitro interplay between Dcp2 and eIF4E. We confirm that Dcp2 is sufficient to remove the 5’ cap. Moreover, we demonstrate that Dcp2 binds RNA with nanomolar affinity. We discovered that, unexpectedly, eIF4E does not interfere with Dcp2’s decapping function, contradicting previous mechanistic models. Moreover, eIF4E binding appears to increase the affinity of Dcp2 for RNA. Although limited to in vitro conditions, our findings warrant a reevaluation of the proposed relationship between these mRNA cap-binding proteins.
Journal Article
Integrating fragment-based screening with targeted protein degradation and genetic rescue to explore eIF4E function
2024
Eukaryotic initiation factor 4E (eIF4E) serves as a regulatory hub for oncogene-driven protein synthesis and is considered a promising anticancer target. Here we screen a fragment library against eIF4E and identify a ligand-binding site with previously unknown function. Follow-up structure-based design yields a low nM tool compound (
4
, K
d
= 0.09 µM; LE 0.38), which disrupts the eIF4E:eIF4G interaction, inhibits translation in cell lysates, and demonstrates target engagement with eIF4E in intact cells (EC
50
= 2 µM). By coupling targeted protein degradation with genetic rescue using eIF4E mutants, we show that disruption of both the canonical eIF4G and non-canonical binding sites is likely required to drive a strong cellular effect. This work highlights the power of fragment-based drug discovery to identify pockets in difficult-to-drug proteins and how this approach can be combined with genetic characterization and degrader technology to probe protein function in complex biological systems.
A structure-guided fragment screen identified a compound, which interacts with a ligand-binding site of unknown function in eukaryotic initiation factor 4E (eIF4E). X-ray crystallography was used to characterise binding and target engagment was shown in cells.
Journal Article
Translational control in the tumor microenvironment promotes lung metastasis
by
Cajal, Santiago Ramón y
,
Siegel, Peter M.
,
Alvarez, Fernando
in
Amino Acid Motifs
,
Animal models
,
Animals
2018
The translation of mRNAs into proteins serves as a critical regulatory event in gene expression. In the context of cancer, deregulated translation is a hallmark of transformation, promoting the proliferation, survival, and metastatic capabilities of cancer cells. The best-studied factor involved in the translational control of cancer is the eukaryotic translation initiation factor 4E (eIF4E). We and others have shown that eIF4E availability and phosphorylation promote metastasis in mouse models of breast cancer by selectively augmenting the translation of mRNAs involved in invasion and metastasis. However, the impact of translational control in cell types within the tumor microenvironment (TME) is unknown. Here, we demonstrate that regulatory events affecting translation in cells of the TME impact cancer progression. Mice bearing a mutation in the phosphorylation site of eIF4E (S209A) in cells comprising the TME are resistant to the formation of lung metastases in a syngeneic mammary tumor model. This is associated with reduced survival of prometastatic neutrophils due to decreased expression of the antiapoptotic proteins BCL2 and MCL1. Furthermore, we demonstrate that pharmacological inhibition of eIF4E phosphorylation prevents metastatic progression in vivo, supporting the development of phosphorylation inhibitors for clinical use.
Journal Article
Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G
by
Gerhard Wagner
,
Evangelos Papadopoulos
,
Eihab Kabha
in
Allosteric Regulation
,
antineoplastic agents
,
Binding Sites
2014
The interaction of the eukaryotic translation initiation factor eIF4E with the initiation factor eIF4G recruits the 40S ribosomal particle to the 5′ end of mRNAs, facilitates scanning to the AUG start codon, and is crucial for eukaryotic translation of nearly all genes. Efficient recruitment of the 40S particle is particularly important for translation of mRNAs encoding oncoproteins and growth-promoting factors, which often harbor complex 5′ UTRs and require efficient initiation. Thus, inhibiting the eIF4E/eIF4G interaction has emerged as a previously unpursued route for developing anticancer agents. Indeed, we discovered small-molecule inhibitors of this eIF4E/eIF4G interaction (4EGIs) that inhibit translation initiation both in vitro and in vivo and were used successfully in numerous cancer–biology and neurobiology studies. However, their detailed molecular mechanism of action has remained elusive. Here, we show that the eIF4E/eIF4G inhibitor 4EGI-1 acts allosterically by binding to a site on eIF4E distant from the eIF4G binding epitope. Data from NMR mapping and high-resolution crystal structures are congruent with this mechanism, where 4EGI-1 attaches to a hydrophobic pocket of eIF4E between β-sheet ₂ (L ₆₀-T ₆₈) and α-helix ₁ (E ₆₉-N ₇₇), causing localized conformational changes mainly in the H ₇₈-L ₈₅ region. It acts by unfolding a short 3 ₁₀-helix (S ₈₂-L ₈₅) while extending α-helix ₁ by one turn (H ₇₈-S ₈₂). This unusual helix rearrangement has not been seen in any previous eIF4E structure and reveals elements of an allosteric inhibition mechanism leading to the dislocation of eIF4G from eIF4E.
Journal Article
Oncofetal protein IGF2BP3 facilitates the activity of proto-oncogene protein eIF4E through the destabilization of EIF4E-BP2 mRNA
2016
RNA-binding proteins (RBPs) have important roles in tumorigenesis. Although IGF2BP3, an evolutionally conserved RBP, has been reported as a useful diagnostic marker for various cancers and has been considered a regulator of tumorigenesis, little is known of the function of IGF2BP3 because of lack of information regarding IGF2BP3 target mRNAs. Here, we report the identification of IGF2BP3 target mRNAs and IGF2BP3 function in cancer proliferation. We identified mRNAs with altered expression in IGF2BP3-depleted cells by massive sequencing analysis and IGF2BP3-binding RNAs by immunoprecipitation of IGF2BP3 followed by massive sequencing analysis, resulting in the identification of 110 candidates that are negatively regulated by IGF2BP3. We found that IGF2BP3 destabilized EIF4E-BP2 and MEIS3 mRNAs. Co-immunoprecipitation analysis revealed the interaction between IGF2BP3 and ribonucleases such as XRN2 and exosome component. The retarded proliferation of IGF2BP3-depleted cells was partially rescued by the depletion of EIF4E-BP2, which negatively regulates eukaryotic translation initiation factor 4E (eIF4E), an activator of translation and a well-known proto-oncogene. Consistent with this observation, IGF2BP3 depletion reduced phosphorylated eIF4E, the active form, and translational efficiency of eIF4E target transcripts. Reduction of phosphorylated eIF4E by IGF2BP3 depletion was rescued by EIF4E-BP2 depletion. At last, we found an inverse correlation between the expression level of
IGF2BP3
and
EIF4E-BP2
in human lung adenocarcinoma tissues. Together, these results suggest that IGF2BP3 promotes eIF4E-mediated translational activation through the reduction of EIF4E-BP2 via mRNA degradation, leading to enhanced cell proliferation. This is the first report demonstrating that IGF2BP3 is an RNA-destabilizing factor. Notably, here we provide the first evidence for the functional linkage between two previously well-known cancer biomarkers, IGF2BP3 and eIF4E.
Journal Article
eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition
by
Osborne, Michael J.
,
Culjkovic-Kraljacic, Biljana
,
Volpon, Laurent
in
Amino Acid Sequence
,
Animals
,
Biological Sciences
2013
Recognition of the methyl-7-guanosine (m ⁷G) cap structure on mRNA is an essential feature of mRNA metabolism and thus gene expression. Eukaryotic translation initiation factor 4E (eIF4E) promotes translation, mRNA export, proliferation, and oncogenic transformation dependent on this cap-binding activity. eIF4E–cap recognition is mediated via complementary charge interactions of the positively charged m ⁷G cap between the negative π-electron clouds from two aromatic residues. Here, we demonstrate that a variant subfamily, eIF4E3, specifically binds the m ⁷G cap in the absence of an aromatic sandwich, using instead a different spatial arrangement of residues to provide the necessary electrostatic and van der Waals contacts. Contacts are much more extensive between eIF4E3–cap than other family members. Structural analyses of other cap-binding proteins indicate this recognition mode is atypical. We demonstrate that eIF4E3 relies on this cap-binding activity to act as a tumor suppressor, competing with the growth-promoting functions of eIF4E. In fact, reduced eIF4E3 in high eIF4E cancers suggests that eIF4E3 underlies a clinically relevant inhibitory mechanism that is lost in some malignancies. Taken together, there is more structural plasticity in cap recognition than previously thought, and this is physiologically relevant.
Journal Article
4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation
by
Izaurralde, Elisa
,
Weiler, Catrin
,
Peter, Daniel
in
631/208/200
,
631/337/574
,
Amino Acid Motifs
2014
eIF4E-binding proteins (4E-BPs) are a widespread class of translational regulators that share a canonical (C) eIF4E-binding motif (4E-BM) with eIF4G. Consequently, 4E-BPs compete with eIF4G for binding to the dorsal surface on eIF4E to inhibit translation initiation. Some 4E-BPs contain non-canonical 4E-BMs (NC 4E-BMs), but the contribution of these motifs to the repressive mechanism—and whether these motifs are present in all 4E-BPs—remains unknown. Here, we show that the three annotated
Drosophila melanogaster
4E-BPs contain NC 4E-BMs. These motifs bind to a lateral surface on eIF4E that is not used by eIF4G. This distinct molecular recognition mode is exploited by 4E-BPs to dock onto eIF4E–eIF4G complexes and effectively displace eIF4G from the dorsal surface of eIF4E. Our data reveal a hitherto unrecognized role for the NC4E-BMs and the lateral surface of eIF4E in 4E-BP-mediated translational repression, and suggest that bipartite 4E-BP mimics might represent efficient therapeutic tools to dampen translation during oncogenic transformation.
eIF4E-binding proteins (4E-BPs) are a conserved class of translational repressors that play essential roles in the regulation of protein expression. Here, Igreja
et al.
indentify non-canonical interactions between 4E-BPs and eIF4E that are required to effectively displace eIF4G and inhibit translation.
Journal Article
Distinct interactions of eIF4A and eIF4E with RNA helicase Ded1 stimulate translation in vivo
2020
Yeast DEAD-box helicase Ded1 stimulates translation initiation, particularly of mRNAs with structured 5'UTRs. Interactions of the Ded1 N-terminal domain (NTD) with eIF4A, and Ded1-CTD with eIF4G, subunits of eIF4F, enhance Ded1 unwinding activity and stimulation of preinitiation complex (PIC) assembly in vitro. However, the importance of these interactions, and of Ded1-eIF4E association, in vivo were poorly understood. We identified separate amino acid clusters in the Ded1-NTD required for binding to eIF4A or eIF4E in vitro. Disrupting each cluster selectively impairs native Ded1 association with eIF4A or eIF4E, and reduces cell growth, polysome assembly, and translation of reporter mRNAs with structured 5'UTRs. It also impairs Ded1 stimulation of PIC assembly on a structured mRNA in vitro. Ablating Ded1 interactions with eIF4A/eIF4E unveiled a requirement for the Ded1-CTD for robust initiation. Thus, Ded1 function in vivo is stimulated by independent interactions of its NTD with eIF4E and eIF4A, and its CTD with eIF4G.
Journal Article