Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Euplotes - drug effects"
Sort by:
Grazers and Phytoplankton Growth in the Oceans: an Experimental and Evolutionary Perspective
The taxonomic composition of phytoplankton responsible for primary production on continental shelves has changed episodically through Earth history. Geological correlations suggest that major changes in phytoplankton composition correspond in time to changes in grazing and seawater chemistry. Testing hypotheses that arise from these correlations requires experimentation, and so we carried out a series of experiments in which selected phytoplankton species were grown in treatments that differed with respect to the presence or absence of grazers as well as seawater chemistry. Both protistan (Euplotes sp.) and microarthropod (Acartia tonsa) grazers changed the growth dynamics and biochemical composition of the green alga Tetraselmis suecica, the diatom Thalassiosira weissflogii, and the cyanobacterium Synechococcus sp., increasing the specific growth rate and palatability of the eukaryotic algae, while decreasing or leaving unchanged both parameters in the cyanobacteria. Synechococcus (especially) and Thalassiosira produced toxins effective against the copepod, but ciliate growth was unaffected. Acartia induced a 4-6 fold increase of Si cell quota in the diatom, but Euplotes had no similar effect. The differential growth responses of the eukaryotic algae and cyanobacteria to ciliate grazing may help to explain the apparently coeval radiation of eukaryophagic protists and rise of eukaryotes to ecological prominence as primary producers in Neoproterozoic oceans. The experimental results suggest that phytoplankton responses to the later radiation of microarthropod grazers were clade-specific, and included changes in growth dynamics, toxin synthesis, encystment, and (in diatoms) enhanced Si uptake.
Recognizing the importance of exposure–dose–response dynamics for ecotoxicity assessment: nitrofurazone-induced antioxidase activity and mRNA expression in model protozoan Euplotes vannus
The equivocality of dose–response relationships has, in practice, hampered the application of biomarkers as a means to evaluate environmental risk, yet this important issue has not yet been fully recognized or explored. This paper evaluates the potential of antioxidant enzymes in the ciliated protozoan Euplotes vannus for use as biomarkers. Dose–response dynamics, together with both the enzyme activity and the gene expression of the antioxidant enzymes, superoxide dismutase, and glutathione peroxidase, were investigated when E. vannus were exposed to graded doses of nitrofurazone for several discrete durations. Mathematical models were explored to characterize the dose–response profiles and, specifically, to identify any equivocality in terms of endpoint. Significant differences were found in both enzyme activity and messenger RNA (mRNA) expression in the E. vannus treated with nitrofurazone, and the interactions between exposure dosage and duration were significant. Correlations between enzyme activity, mRNA expression, and nitrofurazone dose varied with exposure duration. Particularly, the dose–responses showed different dynamics depending on either endpoint or exposure duration. Our findings suggest that both the enzyme activity and the gene expression of the tested antioxidant enzymes can be used as biomarkers for ecotoxicological assessment on the premise of ascertaining appropriate dosage scope, exposure duration, endpoint, etc., which can be achieved by using dose–response dynamics.
Evaluation of the sensitivity to zinc of ciliates Euplotes vannus and Euplotes crassus and their naturally associated bacteria isolated from a polluted tropical bay
The aim of this study was to evaluate the Zn sensitivity of Euplotes vannus, Euplotes crassus, and their naturally associated bacteria sampled from sediments in the northwest and east regions of Guanabara Bay. The unexposed ciliates and bacteria did not appear to be negatively affected by 96 h of assay. In the control group, E. vannus exhibited an increase in the biomass content from 2.3 × 10²to 2.3 × 10³ μg C cm⁻³between 0 and 96 h, and E. crassus increased up to 7.07 × 10² μg C cm⁻³at 48 h. The maximum biomass was pointed by E. crassus (1.33 × 10³ μg C cm⁻³) in the presence of 0.005 mg Zn L⁻¹and E. vannus was naturally associated bacteria (2.40 × 10⁻¹ μg C cm⁻³) in the presence of 1.0 mg Zn L⁻¹(96 h). The growth of E. vannus from the northwest region showed concentration-dependent manners, and it is more sensitive to zinc than E. crassus from the southeast. Naturally associated bacteria showed better adaptation to increasing concentrations of Zn, and the Dunnett test showed that previous environmental selection is important. These results show that new bioremediation tools are necessary.
Horizontal gene transfer and silver nanoparticles production in a new Marinomonas strain isolated from the Antarctic psychrophilic ciliate Euplotes focardii
We isolated a novel bacterial strain from a prokaryotic consortium associated to the psychrophilic marine ciliate Euplotes focardii , endemic of the Antarctic coastal seawater. The 16S rDNA sequencing and the phylogenetic analysis revealed the close evolutionary relationship to the Antarctic marine bacterium Marinomonas sp. BSw10506 and the sub antarctic Marinomonas polaris . We named this new strain Marinomonas sp. ef1. The optimal growth temperature in LB medium was 22 °C. Whole genome sequencing and analysis showed a reduced gene loss limited to regions encoding for transposases. Additionally, five genomic islands, e.g. DNA fragments that facilitate horizontal gene transfer phenomena, were identified. Two open reading frames predicted from the genomic islands coded for enzymes belonging to the Nitro-FMN-reductase superfamily. One of these, the putative NAD(P)H nitroreductase YfkO, has been reported to be involved in the bioreduction of silver (Ag) ions and the production of silver nanoparticles (AgNPs). After the Marinomonas sp. ef1 biomass incubation with 1 mM of AgNO 3 at 22 °C, we obtained AgNPs within 24 h. The AgNPs were relatively small in size (50 nm) and had a strong antimicrobial activity against twelve common nosocomial pathogenic microorganisms including Staphylococcus aureus and two Candida strains. To our knowledge, this is the first report of AgNPs biosynthesis by a Marinomonas strain. This biosynthesis may play a dual role in detoxification from silver nitrate and protection from pathogens for the bacterium and potentially for the associated ciliate. Biosynthetic AgNPs also represent a promising alternative to conventional antibiotics against common pathogens.
Anticancer Activity of Euplotin C, Isolated from the Marine Ciliate Euplotes crassus, Against Human Melanoma Cells
Cutaneous melanoma is the most serious type of skin cancer, so new cytotoxic weapons against novel targets in melanoma are of great interest. Euplotin C (EC), a cytotoxic secondary metabolite of the marine ciliate Euplotes crassus, was evaluated in the present study on human cutaneous melanoma cells to explore its anti-melanoma activity and to gain more insight into its mechanism of action. EC exerted a marked cytotoxic effect against three different human melanoma cell lines (A375, 501Mel and MeWo) with a potency about 30-fold higher than that observed in non-cancer cells (HDFa cells). A pro-apoptotic activity and a decrease in melanoma cell migration by EC were also observed. At the molecular level, the inhibition of the Erk and Akt pathways, which control many aspects of melanoma aggressiveness, was shown. EC cytotoxicity was antagonized by dantrolene, a ryanodine receptor (RyR) antagonist, in a concentration-dependent manner. A role of RyR as a direct target of EC was also suggested by molecular modelling studies. In conclusion, our data provide the first evidence of the anti-melanoma activity of EC, suggesting it may be a promising new scaffold for the development of selective activators of RyR to be used for the treatment of melanoma and other cancer types.
Cytotoxic effects and apoptotic signalling mechanisms of the sesquiterpenoid euplotin C, a secondary metabolite of the marine ciliate Euplotes crassus, in tumour cells
Most antitumour agents with cytotoxic properties induce apoptosis. The lipophilic compound euplotin C, isolated from the ciliate Euplotes crassus, is toxic to a number of different opportunistic or pathogenic microorganisms, although its mechanism of action is currently unknown. We report here that euplotin C is a powerful cytotoxic and pro-apoptotic agent in mouse AtT-20 and rat PC12 tumour-derived cell lines. In addition, we provide evidence that euplotin C treatment results in rapid activation of ryanodine receptors, depletion of Ca2+ stores in the endoplasmic reticulum (ER), the release of cytochrome c from the mitochondria, activation of caspase-12, and activation of caspase-3, leading to apoptosis. Intracellular Ca2+ overload is an early event which induces apoptosis and is parallelled by ER stress and the release of cytochrome c, whereas caspase-12 may be activated by euplotin C at a later stage in the apoptosis pathway. These events, either independently or concomitantly, lead to the activation of the caspase-3 and its downstream effectors, triggering the cell to undergo apoptosis. These results demonstrate that euplotin C may be considered for the design of cytotoxic and pro-apoptotic new drugs.
Biophysical effects of the natural product euplotin C on the Paramecium membrane
The effect of euplotin C—a cytotoxic secondary metabolite produced by the protist ciliate Euplotes crassus—on the voltage-dependent Ca²⁺ channel activity was studied in a single-celled system by analyzing the swimming behavior of Paramecium. When the intraciliary Ca²⁺ concentration associated with plasma membrane depolarization increases, a reversal in the direction of ciliary beating occurs, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca²⁺ influx. The present study demonstrates that the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, is longer in euplotin C-treated cells. Using selective Ca²⁺ channel blockers, we demonstrate that euplotin C modulates Ca²⁺ channels similar to the T- and L-types that occur in mammalian cells. Indeed, the increase of CCR duration significantly decreased when flunarizine and nimodipine-verapamil blockers were employed. Membrane fluidity measurements using a fluorescent dye, 6-lauroyl-2-dimethylaminonaphtalene (laurdan), indicated that membranes in euplotin C-treated cells are more tightly packed and ordered than membranes in control cells. Our data suggest that euplotin C enhances backward swimming in our unicellular model system by interacting with the ciliary Ca²⁺ channel functions through the reduction of cell membrane fluidity.
Effects of Cadmium on Growth and Motility in Euplotes aediculatus Isolated from Activated Sludge
The effects of cadmium were studied on ciliated protozoa isolated from activated sludge with the morphological characteristics of Euplotes aediculatus. Non-axenic cultures were made at 20C in M18 Cerophyl-Prescott liquid at pH 6.9-7.2. The median tolerance limit (TLm), defined as the concentration of cadmium causing a 50 per cent reduction in individuals, was measured. Average TLm values at 24, 48 and 72 h were 2.76, 1.77 and 0.71 ppm cadmium, respectively. Standard deviations were high because the TLm was also related to the growth rate of the culture, falling as growth rate rose. Motility decreased as cadmium concentration increased: this could be used as a measure of toxicity although the relatively high standard deviation might make detection difficult in some cases.