Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,454 result(s) for "Eutrophication - physiology"
Sort by:
Outsized nutrient contributions from small tributaries to a Great Lake
Excessive nitrogen (N) and phosphorus (P) loading is one of the greatest threats to aquatic ecosystems in the Anthropocene, causing eutrophication of rivers, lakes, and marine coastlines worldwide. For lakes across the United States, eutrophication is driven largely by nonpoint nutrient sources from tributaries that drain surrounding watersheds. Decades of monitoring and regulatory efforts have paid little attention to small tributaries of large water bodies, despite their ubiquity and potential local importance. We used a snapshot of nutrient inputs from nearly all tributaries of Lake Michigan—the world’s fifth largest freshwater lake by volume—to determine how land cover and dams alter nutrient inputs across watershed sizes. Loads, concentrations, stoichiometry (N:P), and bioavailability (percentage dissolved inorganic nutrients) varied by orders of magnitude among tributaries, creating a mosaic of coastal nutrient inputs. The 6 largest of 235 tributaries accounted for ∼70% of the daily N and P delivered to Lake Michigan. However, small tributaries exhibited nutrient loads that were high for their size and biased toward dissolved inorganic forms. Higher bioavailability of nutrients from small watersheds suggests greater potential to fuel algal blooms in coastal areas, especially given the likelihood that their plumes become trapped and then overlap in the nearshore zone. Our findings reveal an underappreciated role that small streams may play in driving coastal eutrophication in large water bodies. Although they represent only a modest proportion of lake-wide loads, expanding nutrient management efforts to address smaller watersheds could reduce the ecological impacts of nutrient loading on valuable nearshore ecosystems.
Diatom fucan polysaccharide precipitates carbon during algal blooms
The formation of sinking particles in the ocean, which promote carbon sequestration into deeper water and sediments, involves algal polysaccharides acting as an adhesive, binding together molecules, cells and minerals. These as yet unidentified adhesive polysaccharides must resist degradation by bacterial enzymes or else they dissolve and particles disassemble before exporting carbon. Here, using monoclonal antibodies as analytical tools, we trace the abundance of 27 polysaccharide epitopes in dissolved and particulate organic matter during a series of diatom blooms in the North Sea, and discover a fucose-containing sulphated polysaccharide (FCSP) that resists enzymatic degradation, accumulates and aggregates. Previously only known as a macroalgal polysaccharide, we find FCSP to be secreted by several globally abundant diatom species including the genera Chaetoceros and Thalassiosira . These findings provide evidence for a novel polysaccharide candidate to contribute to carbon sequestration in the ocean. The fate of ocean carbon is determined by the balance between primary productivity and heterotrophic breakdown of that photosynthate. Here the authors show that diatoms produce a polysaccharide that resists bacterial degradation, accumulates, aggregates and stores carbon during spring blooms.
Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet
Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting. Melting of the Greenland Ice Sheet—a threat for sea level rise—is accelerated by ice algal blooms. Here the authors find a link between mineral phosphorus and glacier algae, indicating that dust-derived nutrients aid bloom development, thereby impacting ice sheet melting.
Water temperature drives phytoplankton blooms in coastal waters
Phytoplankton blooms are an important, widespread phenomenon in open oceans, coastal waters and freshwaters, supporting food webs and essential ecosystem services. Blooms are even more important in exploited coastal waters for maintaining high resource production. However, the environmental factors driving blooms in shallow productive coastal waters are still unclear, making it difficult to assess how environmental fluctuations influence bloom phenology and productivity. To gain insights into bloom phenology, Chl a fluorescence and meteorological and hydrological parameters were monitored at high-frequency (15 min) and nutrient concentrations and phytoplankton abundance and diversity, were monitored weekly in a typical Mediterranean shallow coastal system (Thau Lagoon). This study was carried out from winter to late spring in two successive years with different climatic conditions: 2014/2015 was typical, but the winter of 2015/2016 was the warmest on record. Rising water temperature was the main driver of phytoplankton blooms. However, blooms were sometimes correlated with winds and sometimes correlated with salinity, suggesting nutrients were supplied by water transport via winds, saltier seawater intake, rain and water flow events. This finding indicates the joint role of these factors in determining the success of phytoplankton blooms. Furthermore, interannual variability showed that winter water temperature was higher in 2016 than in 2015, resulting in lower phytoplankton biomass accumulation in the following spring. Moreover, the phytoplankton abundances and diversity also changed: cyanobacteria (< 1 μm), picoeukaryotes (< 1 μm) and nanoeukaryotes (3-6 μm) increased to the detriment of larger phytoplankton such as diatoms. Water temperature is a key factor affecting phytoplankton bloom dynamics in shallow productive coastal waters and could become crucial with future global warming by modifying bloom phenology and changing phytoplankton community structure, in turn affecting the entire food web and ecosystem services.
Coastal eutrophication as a driver of salt marsh loss
A nine-year whole-ecosystem experiment demonstrates that nutrient enrichment, a global problem in coastal ecosystems, can be a driver of salt-marsh loss. Excess nutrients threaten salt marshes Salt marshes provide important ecosystem services such as storm protection for coastal cities, nutrient removal and carbon sequestration, but despite protective measures these ecosystems are in decline. Nine years of data from a whole-ecosystem nutrient-enrichment experiment now demonstrate that current levels of coastal nutrient loading can alter key salt-marsh-ecosystem properties, leading to the collapse of creek banks and, ultimately, the conversion of salt marsh into mudflat. The potential deterioration of coastal marshes owing to eutrophication adds another dimension to the challenge of managing nitrogen while meeting food-production demands in the twenty-first century. Salt marshes are highly productive coastal wetlands that provide important ecosystem services such as storm protection for coastal cities, nutrient removal and carbon sequestration. Despite protective measures, however, worldwide losses of these ecosystems have accelerated in recent decades 1 . Here we present data from a nine-year whole-ecosystem nutrient-enrichment experiment. Our study demonstrates that nutrient enrichment, a global problem for coastal ecosystems 2 , 3 , 4 , can be a driver of salt marsh loss. We show that nutrient levels commonly associated with coastal eutrophication increased above-ground leaf biomass, decreased the dense, below-ground biomass of bank-stabilizing roots, and increased microbial decomposition of organic matter. Alterations in these key ecosystem properties reduced geomorphic stability, resulting in creek-bank collapse with significant areas of creek-bank marsh converted to unvegetated mud. This pattern of marsh loss parallels observations for anthropogenically nutrient-enriched marshes worldwide, with creek-edge and bay-edge marsh evolving into mudflats and wider creeks 5 , 6 , 7 . Our work suggests that current nutrient loading rates to many coastal ecosystems have overwhelmed the capacity of marshes to remove nitrogen without deleterious effects. Projected increases in nitrogen flux to the coast, related to increased fertilizer use required to feed an expanding human population, may rapidly result in a coastal landscape with less marsh, which would reduce the capacity of coastal regions to provide important ecological and economic services.
Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment
Lake 227, a small lake in the Precambrian Shield at the Experimental Lakes Area (ELA), has been fertilized for 37 years with constant annual inputs of phosphorus and decreasing inputs of nitrogen to test the theory that controlling nitrogen inputs can control eutrophication. For the final 16 years (1990-2005), the lake was fertilized with phosphorus alone. Reducing nitrogen inputs increasingly favored nitrogen-fixing cyanobacteria as a response by the phytoplankton community to extreme seasonal nitrogen limitation. Nitrogen fixation was sufficient to allow biomass to continue to be produced in proportion to phosphorus, and the lake remained highly eutrophic, despite showing indications of extreme nitrogen limitation seasonally. To reduce eutrophication, the focus of management must be on decreasing inputs of phosphorus.
Eutrophication causes speciation reversal in whitefish adaptive radiations
Species diversity can be lost through two different but potentially interacting extinction processes: demographic decline and speciation reversal through introgressive hybridization. To investigate the relative contribution of these processes, we analysed historical and contemporary data of replicate whitefish radiations from 17 pre-alpine European lakes and reconstructed changes in genetic species differentiation through time using historical samples. Here we provide evidence that species diversity evolved in response to ecological opportunity, and that eutrophication, by diminishing this opportunity, has driven extinctions through speciation reversal and demographic decline. Across the radiations, the magnitude of eutrophication explains the pattern of species loss and levels of genetic and functional distinctiveness among remaining species. We argue that extinction by speciation reversal may be more widespread than currently appreciated. Preventing such extinctions will require that conservation efforts not only target existing species but identify and protect the ecological and evolutionary processes that generate and maintain species. Historical and contemporary data of whitefish radiations from pre-alpine European lakes and reconstruction of changes in whitefish genetic species differentiation through time show that species diversity may have evolved in response to ecological opportunity, and that eutrophication, by diminishing this opportunity, has driven extinctions through speciation reversal and demographic decline. Extinction through reversed speciation Species extinctions happen in two very different ways. In the first, there can be a simple population decline. Less obvious is a second mechanism, in which previously distinct species merge through a reversal of the speciation process. This process reduces biodiversity, but not necessarily the total number of individual animals or plants present. An analysis of historical and contemporary data on endemic whitefish from 17 large European lakes that experienced major diversity loss demonstrates the second mechanism in action. There is strong evidence to suggest that eutrophication, the biological enrichment of a lake over time, has driven the extinction of many endemic species by reversing ecological speciation. Such extinctions can be prevented only if conservation efforts, in addition to preserving existing species, identify and protect the processes that generate species.
Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure
We present the results of an analysis of the 16S rRNA-based taxonomical structure of bacteria together with an analysis of carbon source utilization ability using EcoPlate (Biolog, USA) metabolic fingerprinting assessment against the backdrop of physicochemical parameters in fifteen interconnected lakes. The lakes exhibit a wide spectrum of trophic gradients and undergo different intensities of anthropopressure. Sequences of V3–V4 16S rRNA genes binned by taxonomic assignment to family indicated that bacterial communities in the highly eutrophicated lakes were distinctly different from the bacterial communities in the meso-eutrophic lakes (ANOSIM r = 0.99, p = 0.0002) and were characterized by higher richness and more diverse taxonomical structure. Representatives of the Actinobacteria , Proteobacteria , Cyanobacteria , Planctomycetes , Verrucomicrobia , Bacteroides phyla predominated. In most cases their relative abundance was significantly correlated with lake trophic state. We found no similar clear relationship of community-level physiological profiling with lake trophic state. However, we found some significant links between the taxonomic and metabolic structure of the microbes in the studied lakes (Mantel’s correlation r = 0.22, p = 0.006). The carbon source utilization ability of the studied microorganisms was affected not only by the taxonomic groups present in the lakes but also by various characteristics like a high PO 4 3− concentration inhibiting the utilization of phosphorylated carbon.
Massive Southern Ocean phytoplankton bloom fed by iron of possible hydrothermal origin
Primary production in the Southern Ocean (SO) is limited by iron availability. Hydrothermal vents have been identified as a potentially important source of iron to SO surface waters. Here we identify a recurring phytoplankton bloom in the high-nutrient, low-chlorophyll waters of the Antarctic Circumpolar Current in the Pacific sector of the SO, that we argue is fed by iron of hydrothermal origin. In January 2014 the bloom covered an area of ~266,000 km 2 with depth-integrated chlorophyll a  > 300 mg m −2 , primary production rates >1 g C m −2 d −1 , and a mean CO 2 flux of −0.38 g C m −2 d −1 . The elevated iron supporting this bloom is likely of hydrothermal origin based on the recurrent position of the bloom relative to two active hydrothermal vent fields along the Australian Antarctic Ridge and the association of the elevated iron with a distinct water mass characteristic of a nonbuoyant hydrothermal vent plume. Primary productivity in the Southern Ocean plays an important role in the drawdown of atmospheric CO 2 , but phytoplankton growth is limited by iron. Here the authors show that iron from hydrothermal vents fuels massive phytoplankton blooms in the Southern Ocean that have recurred in the same location for decades.