Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Exflagellation"
Sort by:
Pyp25α is required for male gametocyte exflagellation
Abstract Malaria, a mosquito-borne infectious disease, is caused by the unicellular apicomplexan protozoa of the genus Plasmodium. For malaria parasite transmission, the essential sexual stage includes production of gametocytes through gametocytogenesis in vertebrate hosts and formation of gametes from gametocytes through gametogenesis in mosquito vectors. Whereas each female gametocyte forms a single immotile macrogamete, a male gametocyte produces eight flagella-like microgametes in a process called exflagellation. We identified a conserved protein named as Py05543 (Pyp25α), required for male gametocyte exflagellation in Plasmodium yoelii, which is the ortholog of PFL1770c (PF3D7_1236600). Interestingly, PF3D7_1236600 was previously phenotypically screened to be gametocyte-essential genes during gametocytogenesis of Plasmodium falciparum, using piggyBac transposon-mediated insertional mutagenesis. In this study, using CRISPR/Cas9-mediated genome editing, the Pyp25α¯ (KO) parasite line was successfully established. We found that the KO parasites proliferated asexually in mouse blood normally. In addition, compared with that of the parental parasites, the KO parasites displayed similar levels of gametocytes formation. Unexpectedly, the KO parasites showed considerable deficiency in exflagellation of male gametes, by observing exflagellation centre formation. Taken together, our data suggested that Pyp25α gene, the ortholog of PF3D7_1236600, was nonessential for the growth of asexual parasites, required for male gametocyte exflagellation in P. yoelii. A conserved malaria parasite gene, required for male gametocyte exflagellation, was not essential for the growth of Plasmodium asexual blood stages.
The Plasmodium falciparum male gametocyte protein P230p, a paralog of P230, is vital for ookinete formation and mosquito transmission
Two members of 6-cysteine (6-cys) protein family, P48/45 and P230, are important for gamete fertility in rodent and human malaria parasites and are leading transmission blocking vaccine antigens. Rodent and human parasites encode a paralog of P230, called P230p. While P230 is expressed in male and female parasites, P230p is expressed only in male gametocytes and gametes. In rodent malaria parasites this protein is dispensable throughout the complete life-cycle; however, its function in P . falciparum is unknown. Using CRISPR/Cas9 methodology we disrupted the gene encoding Pfp230p resulting in P . falciparum mutants ( Pf Δ p230p ) lacking P230p expression. The Pf Δ p230p mutants produced normal numbers of male and female gametocytes, which retained expression of P48/45 and P230. Upon activation male PfΔp230p gametocytes undergo exflagellation and form male gametes. However, male gametes are unable to attach to red blood cells resulting in the absence of characteristic exflagellation centres in vitro . In the absence of P230p, zygote formation as well as oocyst and sporozoite development were strongly reduced (>98%) in mosquitoes. These observations demonstrate that P230p, like P230 and P48/45, has a vital role in P . falciparum male fertility and zygote formation and warrants further investigation as a potential transmission blocking vaccine candidate.
Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission
Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19 -deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in Δ DPY19 gametocyte egress and exflagellation. While egress is diminished, Δ DPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum , and the ookinete defect is concordant with defective CTRP secretion on the Δ DPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite. Here, Lopaticki et al. show that Plasmodium falciparum expresses a Dpy19 C-mannosyltransferase in the endoplasmic reticulum that glycosylates TSR domains. Functional characterization shows that PfDpy19 plays a critical role in transmission through mosquitoes as PfDpy19-deficiency abolishes C-glycosylation and destabilizes proteins relevant for gametogenesis and oocyst formation.
Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito
Long-acting injectable medications, such as atovaquone, offer the prospect of a “chemical vaccine” for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b , a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia ( Anopheles stephensi) or Africa ( An. gambiae) . Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field. Malaria parasites from patients who fail atovaquone therapies are highly drug-resistant, with mutations at Y268 in cytochrome b . Here the authors show that this mutation results in multiple defects in the parasite’s development and prevents transmission from mosquitoes to mice.
Atypical flagella assembly and haploid genome coiling during male gamete formation in Plasmodium
Gametogenesis in Plasmodium spp. occurs within the Anopheles mosquito and is essential for sexual reproduction / differentiation and onwards transmission to mammalian hosts. To better understand the 3D organisation of male gametogenesis, we used serial block face scanning electron microscopy (SBF-SEM) and serial-section cellular electron tomography (ssET) of P. berghei microgametocytes to examine key structures during male gamete formation. Our data reveals an elaborate organisation of axonemes coiling around the nucleus in opposite directions forming a central axonemal band in microgametocytes. Furthermore, we discover the nucleus of microgametes to be tightly coiled around the axoneme in a complex structure whose formation starts before microgamete emergence during exflagellation. Our discoveries of the detailed 3D organisation of the flagellated microgamete and the haploid genome highlight some of the atypical mechanisms of axoneme assembly and haploid genome organisation during male gamete formation in the malaria parasite. Gametogenesis is critical for sexual reproduction. Using volume electron microscopy, Hair et al report the structural organisation of the haploid nucleus coiled around the axoneme of the Plasmodium berghei male microgamete.
Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector
Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence. Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium-independent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparum cdpk4 − parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4 − parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild-type and Plasmodium falciparum cdpk4 − late gametocyte stages to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events, such as DNA replication, mRNA translation, and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation and thereby is critical for parasite transmission to the mosquito vector. IMPORTANCE Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence. Targeting PfCDPK4 and its substrates may provide insights into achieving effective malaria transmission-blocking strategies.
A paternal lactate dehydrogenase critically enhances male gametogenesis and malaria transmission
Malaria blood stage parasite development relies on glycolysis to generate ATP, which requires pyruvate to lactate conversion by an essential lactate dehydrogenase enzyme (LDH1). Conversely, parasites developing in the mosquito employ mitochondrial chemiosmosis for ATP production. The source of ATP during transition from vertebrate to insect is less clear; gametes form in the mosquito midgut lumen within minutes of gametocyte ingestion, and while female gametes possess a mitochondrion, this organelle is absent from male gametes (microgametes). Here, we investigate a second LDH enzyme (LDH2) found exclusively in male gametocytes and microgametes. Knockout of Plasmodium berghei LDH2 expression reduces the number and size of exflagellation centres and radically diminishes oocyst development in Anopheles stephensi mosquitoes. Our data indicate that LDH2 supplements LDH1 activity to facilitate the cytokinesis step of male gametogenesis, while LDH1 alone is sufficient for motility of free-swimming microgametes. Our results point to a key role for glycolytic ATP production in microgamete formation and function and identify LDH activity as a potential malaria transmission-blocking drug target.
Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium , which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Role of a patatin-like phospholipase in Plasmodium falciparum gametogenesis and malaria transmission
Transmission of Plasmodium falciparum involves a complex process that starts with the ingestion of gametocytes by female Anopheles mosquitoes during a blood meal. Activation of gametocytes in the mosquito midgut triggers “rounding up” followed by egress of both male and female gametes. Egress requires secretion of a perforin-like protein, PfPLP2, from intracellular vesicles to the periphery, which leads to destabilization of peripheral membranes. Male gametes also develop flagella, which assist in binding female gametes for fertilization. This process of gametogenesis, which is key to malaria transmission, involves extensive membrane remodeling as well as vesicular discharge. Phospholipase A2 enzymes (PLA2) are known to mediate membrane remodeling and vesicle secretion in diverse organisms. Here, we show that a P. falciparum patatin-like phospholipase (PfPATPL1) with PLA2 activity plays a key role in gametogenesis. Conditional deletion of the gene encoding PfPATPL1 does not affect P. falciparum blood stage growth or gametocyte development but reduces efficiency of rounding up, egress, and exflagellation of gametocytes following activation. Interestingly, deletion of the PfPATPL1 gene inhibits secretion of PfPLP2, reducing the efficiency of gamete egress. Deletion of PfPATPL1 also reduces the efficiency of oocyst formation in mosquitoes. These studies demonstrate that PfPATPL1 plays a role in gametogenesis, thereby identifying PLA2 phospholipases such as PfPATPL1 as potential targets for the development of drugs to block malaria transmission.
Evaluation of transmission-blocking potential of Pv22 using clinical Plasmodium vivax infections and transgenic Plasmodium berghei
•We generated transgenic P. berghei parasites expressing Pv22.•We used the transgenic parasites to evaluate Pv22′s transmission-blocking potential.•Clinical P. vivax isolates were used in membrane feeding.•Antibodies against rPv22 significantly reduced the oocyst density in mosquitoes.•Feeding assay results disfavor Pv22 as a promising TBV candidate. Antigens expressed during the sexual development of malaria parasites are transmission-blocking vaccine (TBV) targets. Pb22, a protein expressed and localized to the plasma membrane of gametes and ookinetes in Plasmodium berghei, is an excellent TBV candidate. Here, we evaluated the TB potential of the Plasmodium vivax ortholog Pv22 using a transgenic P. berghei parasite line and P. vivax clinical isolates. The full-length recombinant Pv22 (rPv22) protein was produced and used to immunize mice and rabbits to obtain antibodies. We generated a transgenic P. berghei line (TrPv22Pb) by inserting the pv22 gene into the pb22 locus and showed that Pv22 expression completely rescued the defects in male gametogenesis of the pb22 deletion parasite. Since Pv22 in the transgenic parasite showed similar expression and localization patterns to Pb22, we used the TrPv22Pb parasite as a surrogate to evaluate the TB potential of Pv22. In mosquito feeding assays, mosquitoes feeding on rPv22-immunized mice infected with TrPv22Pb parasites showed a 49.3–53.3 % reduction in the oocyst density compared to the control group. In vitro assays showed that the rPv22 immune sera significantly inhibited exflagellation and ookinete formation of the TrPv22Pb parasites. In a direct membrane feeding assay using three clinical P. vivax isolates, the rabbit anti-rPv22 antibodies also significantly decreased the oocyst density by 53.7, 30.2, and 26.2 %, respectively. This study demonstrated the feasibility of using transgenic P. berghei parasites expressing P. vivax antigens as a potential tool to evaluate TBV candidates. However, the much weaker TB activity of Pv22 obtained from two complementary assays suggest that Pv22 may not be a promising TBV candidate for P. vivax.