Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,195 result(s) for "Exocytosis - physiology"
Sort by:
Molecular machines governing exocytosis of synaptic vesicles
A brief survey of the molecular mechanisms that give the vesicle cycle in intact synapses its efficiency. Neurotransmitter release mechanisms at the synapse Fast neurotransmission at synapses relies crucially on a series of membrane trafficking and signalling proteins, such as SNAREs, synaptotagmins and complexins. However, recent results have been hard to integrate into a consistent picture of how these enable calcium-dependent fusion of synaptic vesicles. In this Review, Reinhard Jahn and Dirk Fasshauer unify the latest biochemical and biophysical data with older knowledge to propose a fresh view of the field of synaptic transmission. Calcium-dependent exocytosis of synaptic vesicles mediates the release of neurotransmitters. Important proteins in this process have been identified such as the SNAREs, synaptotagmins, complexins, Munc18 and Munc13. Structural and functional studies have yielded a wealth of information about the physiological role of these proteins. However, it has been surprisingly difficult to arrive at a unified picture of the molecular sequence of events from vesicle docking to calcium-triggered membrane fusion. Using mainly a biochemical and biophysical perspective, we briefly survey the molecular mechanisms in an attempt to functionally integrate the key proteins into the emerging picture of the neuronal fusion machine.
The biology of extracellular vesicles: The known unknowns
For many years, double-layer phospholipid membrane vesicles, released by most cells, were not considered to be of biological significance. This stance has dramatically changed with the recognition of extracellular vesicles (EVs) as carriers of biologically active molecules that can traffic to local or distant targets and execute defined biological functions. The dimensionality of the field has expanded with the appreciation of diverse types of EVs and the complexity of vesicle biogenesis, cargo loading, release pathways, targeting mechanisms, and vesicle processing. With the expanded interest in the field and the accelerated rate of publications on EV structure and function in diverse biomedical fields, it has become difficult to distinguish between well-established biological features of EV and the untested hypotheses or speculative assumptions that await experimental proof. With the growing interest despite the limited evidence, we sought in this essay to formulate a set of unsolved mysteries in the field, sort out established data from fascinating hypotheses, and formulate several challenging questions that must be answered for the field to advance.
Lectin-Based Food Poisoning: A New Mechanism of Protein Toxicity
Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.
Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses
Key Points The coupling between Ca 2+ channels and Ca 2+ sensors of exocytosis is a key determinant of speed and efficacy of synaptic transmission at peripheral and central synapses. Previous studies of the young calyx of Held revealed that Ca 2+ channels are loosely coupled to the Ca 2+ sensors and that several Ca 2+ channels have to open to trigger transmitter release. Recent studies of inhibitory synapses in the hippocampus and cerebellum indicated that Ca 2+ channels are tightly coupled to their Ca 2+ sensors at these synapses and that only a small number of open Ca 2+ channels are required for evoked transmitter release. Likewise, analysis of synaptic transmission at the calyx of Held at different developmental stages indicated that both the coupling distance and the number of open Ca 2+ channels decrease during development. Molecular analysis suggests that coupling at the nanometre scale is generated by protein–protein interactions involving Ca 2+ channels and Ca 2+ sensors, but also several other proteins enriched in presynaptic terminals. Tight coupling of a small number of Ca 2+ channels to the transmitter release machinery offers several functional advantages, as it increases efficacy, speed and energy efficiency of synaptic transmission. The efficacy of synaptic transmission depends on the coupling between presynaptic calcium channels and the molecules that trigger exocytosis in response to calcium influx. Jonas and colleagues describe evidence for tight coupling at certain fast mammalian synapses, its contribution to signalling properties and the underlying protein–protein interactions. The physical distance between presynaptic Ca 2+ channels and the Ca 2+ sensors that trigger exocytosis of neurotransmitter-containing vesicles is a key determinant of the signalling properties of synapses in the nervous system. Recent functional analysis indicates that in some fast central synapses, transmitter release is triggered by a small number of Ca 2+ channels that are coupled to Ca 2+ sensors at the nanometre scale. Molecular analysis suggests that this tight coupling is generated by protein–protein interactions involving Ca 2+ channels, Ca 2+ sensors and various other synaptic proteins. Nanodomain coupling has several functional advantages, as it increases the efficacy, speed and energy efficiency of synaptic transmission.
Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking
Parkinson disease and dementia with Lewy bodies are featured with the formation of Lewy bodies composed mostly of α-synuclein (α-Syn) in the brain. Although evidence indicates that the large oligomeric or protofibril forms of α-Syn are neurotoxic agents, the detailed mechanisms of the toxic functions of the oligomers remain unclear. Here, we show that large α-Syn oligomers efficiently inhibit neuronal SNARE-mediated vesicle lipid mixing. Large α-Syn oligomers preferentially bind to the N-terminal domain of a vesicular SNARE protein, synaptobrevin-2, which blocks SNARE-mediated lipid mixing by preventing SNARE complex formation. In sharp contrast, the α-Syn monomer has a negligible effect on lipid mixing even with a 30-fold excess compared with the case of large α-Syn oligomers. Thus, the results suggest that large α-Syn oligomers function as inhibitors of dopamine release, which thus provides a clue, at the molecular level, to their neurotoxicity.
Synaptic vesicles transiently dock to refill release sites
Synaptic vesicles fuse with the plasma membrane to release neurotransmitter following an action potential, after which new vesicles must ‘dock’ to refill vacated release sites. To capture synaptic vesicle exocytosis at cultured mouse hippocampal synapses, we induced single action potentials by electrical field stimulation, then subjected neurons to high-pressure freezing to examine their morphology by electron microscopy. During synchronous release, multiple vesicles can fuse at a single active zone. Fusions during synchronous release are distributed throughout the active zone, whereas fusions during asynchronous release are biased toward the center of the active zone. After stimulation, the total number of docked vesicles across all synapses decreases by ~40%. Within 14 ms, new vesicles are recruited and fully replenish the docked pool, but this docking is transient and they either undock or fuse within 100 ms. These results demonstrate that the recruitment of synaptic vesicles to release sites is rapid and reversible.Kusick et al. capture snapshots of synaptic vesicle docking and fusion using a new time-resolved electron microscopy technique. They find that vesicles are replaced milliseconds after they fuse, which may contribute to short-term synaptic plasticity.
Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors
N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and long-term depression (LTD) of signal transmission form neural circuits and thus are thought to underlie learning and memory. These mechanisms are mediated by AMPA receptor (AMPAR) trafficking in postsynaptic neurons. However, the regulatory mechanism of bidirectional plasticity at excitatory synapses remains unclear. We present a network model of AMPAR trafficking for adult hippocampal pyramidal neurons, which reproduces both LTP and LTD. We show that the induction of both LTP and LTD is regulated by the competition between exocytosis and endocytosis of AMPARs, which are mediated by the calcium-sensors synaptotagmin 1/7 (Syt1/7) and protein interacting with C-kinase 1 (PICK1), respectively. Our result indicates that recycling endosomes containing AMPAR are always ready for Syt1/7-dependent exocytosis of AMPAR at peri-synaptic/synaptic membranes. This is because molecular motor myosin V b constitutively transports the recycling endosome toward the membrane in a Ca 2+ -independent manner.
α-Synuclein promotes dilation of the exocytotic fusion pore
The authors used knockout mice to demonstrate the normal function of the protein α-synuclein, which has a central role in Parkinson's and other neurodegenerative diseases. The presynaptic protein promoted dilation of the exocytotic fusion pore, and mutations that cause Parkinson's disease specifically impaired this normal function. The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease. Like that of other proteins that accumulate in neurodegenerative disease, however, the function of α-synuclein remains unknown. Localization to the nerve terminal suggests a role in neurotransmitter release, and overexpression inhibits regulated exocytosis, but previous work has failed to identify a clear physiological defect in mice lacking all three synuclein isoforms. Using adrenal chromaffin cells and neurons, we now find that both overexpressed and endogenous synuclein accelerate the kinetics of individual exocytotic events, promoting cargo discharge and reducing pore closure ('kiss-and-run'). Thus, synuclein exerts dose-dependent effects on dilation of the exocytotic fusion pore. Remarkably, mutations that cause Parkinson's disease abrogate this property of α-synuclein without impairing its ability to inhibit exocytosis when overexpressed, indicating a selective defect in normal function.
The control of release probability at nerve terminals
Exocytosis is a fundamental membrane fusion process by which the soluble or membrane-associated cargoes of a secretory vesicle are delivered to the extracellular milieu or the cell surface. While essential for all organs, the brain relies on a specialized form of exocytosis to mediate information flow throughout its vast circuitry. Neurotransmitter-laden synaptic vesicles fuse with the plasma membrane on cue with astonishing speed in a probabilistic process that is both tightly regulated and capable of a fascinating array of plasticities. Here, we examine progress in the molecular understanding of synaptic vesicle fusion and its control.Neurosecretion is controlled by SNAREs and SNARE-binding proteins and is initiated by the influx of Ca2+ ions through voltage-gated calcium channels (VGCCs). In this Review, Dittman and Ryan discuss progress in our understanding of the molecular mechanisms underlying the function of VGCCs and fusion machinery.