Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Exoskeleton Device - trends"
Sort by:
Experiment-free exoskeleton assistance via learning in simulation
Exoskeletons have enormous potential to improve human locomotive performance 1 – 3 . However, their development and broad dissemination are limited by the requirement for lengthy human tests and handcrafted control laws 2 . Here we show an experiment-free method to learn a versatile control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments. The learned controller is deployed on a custom hip exoskeleton that automatically generates assistance across different activities with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair climbing, respectively. Our framework may offer a generalizable and scalable strategy for the rapid development and widespread adoption of a variety of assistive robots for both able-bodied and mobility-impaired individuals. A learning-in-simulation framework for wearable robots uses dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments to assist versatile activities.
The exoskeleton expansion: improving walking and running economy
Since the early 2000s, researchers have been trying to develop lower-limb exoskeletons that augment human mobility by reducing the metabolic cost of walking and running versus without a device. In 2013, researchers finally broke this ‘metabolic cost barrier’. We analyzed the literature through December 2019, and identified 23 studies that demonstrate exoskeleton designs that improved human walking and running economy beyond capable without a device. Here, we reviewed these studies and highlighted key innovations and techniques that enabled these devices to surpass the metabolic cost barrier and steadily improve user walking and running economy from 2013 to nearly 2020. These studies include, physiologically-informed targeting of lower-limb joints; use of off-board actuators to rapidly prototype exoskeleton controllers; mechatronic designs of both active and passive systems; and a renewed focus on human-exoskeleton interface design. Lastly, we highlight emerging trends that we anticipate will further augment wearable-device performance and pose the next grand challenges facing exoskeleton technology for augmenting human mobility.
Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study
Assistive exoskeletons can reduce the metabolic cost of walking, and recent advances in exoskeleton device design and control have resulted in large metabolic savings. Most exoskeleton devices provide assistance at either the ankle or hip. Exoskeletons that assist multiple joints have the potential to provide greater metabolic savings, but can require many actuators and complicated controllers, making it difficult to design effective assistance. Coupled assistance, when two or more joints are assisted using one actuator or control signal, could reduce control dimensionality while retaining metabolic benefits. However, it is unknown which combinations of assisted joints are most promising and if there are negative consequences associated with coupled assistance. Since designing assistance with human experiments is expensive and time-consuming, we used musculoskeletal simulation to evaluate metabolic savings from multi-joint assistance and identify promising joint combinations. We generated 2D muscle-driven simulations of walking while simultaneously optimizing control strategies for simulated lower-limb exoskeleton assistive devices to minimize metabolic cost. Each device provided assistance either at a single joint or at multiple joints using massless, ideal actuators. To assess if control could be simplified for multi-joint exoskeletons, we simulated different control strategies in which the torque provided at each joint was either controlled independently or coupled between joints. We compared the predicted optimal torque profiles and changes in muscle and total metabolic power consumption across the single joint and multi-joint assistance strategies. We found multi-joint devices–whether independent or coupled–provided 50% greater metabolic savings than single joint devices. The coupled multi-joint devices were able to achieve most of the metabolic savings produced by independently-controlled multi-joint devices. Our results indicate that device designers could simplify multi-joint exoskeleton designs by reducing the number of torque control parameters through coupling, while still maintaining large reductions in metabolic cost.
Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons
Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a 'roadmap' for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s-1) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s-1) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle's contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade (p < 0.0001) while the hip's contribution increased from 27% to 52% (p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47-55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase (i.e., regenerative braking).
Effects of the degree of freedom and assistance characteristics of powered ankle-foot orthoses on gait stability
We studied the use of powered ankle-foot orthoses (PAFOs) and walking stability of the wearers, focusing on the ankle joint, which is known to play a critical role in gait stability. Recognizing that the subtalar joint is an important modulator of walking stability, we conducted the walking experiment on a treadmill by applying varying assistance techniques to the 2-degree-of-freedom (DOF) PAFO, which has the subtalar joint as the rotating axis, and the commonly used 1-DOF PAFO. The participants were 8 healthy men (mean±SD: height, 174.8±7.1 cm; weight, 69.8±6.5 kg; and age, 29.1±4.8 years) with no history of gait abnormality. Center of pressure (COP) was measured with an in-shoe pressure sensor, and stability was estimated on the basis of the angular acceleration measured with the inertial measurement unit attached to the trunk. The experimental results of the 2-DOF PAFO, with or without assistance, showed a significantly higher stability than those of the 1-DOF PAFO (up to 23.78%, p<0.0326). With the 1-DOF PAFO, the stability deteriorated with the increase in the degree of assistance provided. With the 2-DOF PAFO, this tendency was not observed. Thus, the importance of the subtalar joint was proven using PAFOs. The mean position analysis of the COP during the stance phase confirmed that the COP highly correlated with stability (Pearson correlation coefficient: −0.6607). Thus, we conclude that only the 2-DOF PAFO can maintain walking stability, regardless of the assistance characteristics, by preserving the COP in the medial position through eversion. Awareness regarding the role of the subtalar joint is necessary during the manufacture or use of PAFOs, as lack of awareness could lead to the degradation of the wearer’s gait stability, regardless of effective assistance, and deteriorate the fundamental functionality of PAFO.
Robots for stroke rehabilitation: not all that glitters is gold
[...]it is now possible to carry out rehabilitation sessions that are, at the same time, intensive, task-specific, motivating and capable of providing adequate feedback to drive plasticity-dependent recovery (Morone et al., 2017, 2012). [...]the past two decades have seen clinicians divided into those who are enthusiastic about robot therapy and those who are more pessimistic (losa et al., 2016). [...]robotics today is not only the prerogative of research and university hospitals; indeed it is even spreading to smaller neurorehabilitation hospitals.
Tremor Control Devices for Essential Tremor: A Systematic Literature Review
There is a growing interest in nonpharmacological approaches for essential tremor (ET), including tremor cancelation devices. However, the true efficacy of such devices in ET remains unclear. A systematic literature review was conducted using standardized criteria regarding efficacy and comfortability. Devices focused on design or experimental testing in which tremor was simulated in a robot were excluded. Out of 324 articles initially identified, 12 articles were included. Orthoses using biomechanical loading and neuromodulation with electrical stimulation, and external tremor cancelation devices, were the main interventions used to suppress tremor. All devices were designed to control tremor of the upper limbs at different anatomical locations. Overall, an average tremor attenuation of 50-98% was reported (level of evidence III). Interference with voluntary movements and portability was described as the main drawback. In conclusion, this review highlights the growing interest in emerging tremor control devices and the importance of assessing comfort without affecting voluntary movements. However, the level of evidence regarding the efficacy of these tremor control devices remains low. An integrated multidisciplinary combination approach of engineering, robotics, physiology, physiotherapy, and clinical assessment is needed to improve the quality of non-pharmacological interventions for ET.
Review of control strategies for lower-limb exoskeletons to assist gait
Background Many lower-limb exoskeletons have been developed to assist gait, exhibiting a large range of control methods. The goal of this paper is to review and classify these control strategies, that determine how these devices interact with the user. Methods In addition to covering the recent publications on the control of lower-limb exoskeletons for gait assistance, an effort has been made to review the controllers independently of the hardware and implementation aspects. The common 3-level structure (high, middle, and low levels) is first used to separate the continuous behavior (mid-level) from the implementation of position/torque control (low-level) and the detection of the terrain or user’s intention (high-level). Within these levels, different approaches (functional units) have been identified and combined to describe each considered controller. Results 291 references have been considered and sorted by the proposed classification. The methods identified in the high-level are manual user input, brain interfaces, or automatic mode detection based on the terrain or user’s movements. In the mid-level, the synchronization is most often based on manual triggers by the user, discrete events (followed by state machines or time-based progression), or continuous estimations using state variables. The desired action is determined based on position/torque profiles, model-based calculations, or other custom functions of the sensory signals. In the low-level, position or torque controllers are used to carry out the desired actions. In addition to a more detailed description of these methods, the variants of implementation within each one are also compared and discussed in the paper. Conclusions By listing and comparing the features of the reviewed controllers, this work can help in understanding the numerous techniques found in the literature. The main identified trends are the use of pre-defined trajectories for full-mobilization and event-triggered (or adaptive-frequency-oscillator-synchronized) torque profiles for partial assistance. More recently, advanced methods to adapt the position/torque profiles online and automatically detect terrains or locomotion modes have become more common, but these are largely still limited to laboratory settings. An analysis of the possible underlying reasons of the identified trends is also carried out and opportunities for further studies are discussed.
A Systematic Review on Evaluation Strategies for Field Assessment of Upper-Body Industrial Exoskeletons: Current Practices and Future Trends
With rising manual work demands, physical assistance at the workplace is crucial, wherein the use of industrial exoskeletons (i-EXOs) could be advantageous. However, outcomes of numerous laboratory studies may not be directly translated to field environments. To explore this discrepancy, we conducted a systematic review including 31 studies to identify and compare the approaches, techniques, and outcomes within field assessments of shoulder and back support i-EXOs. Findings revealed that the subjective approaches [i.e., discomfort (23), usability (22), acceptance/perspectives (21), risk of injury (8), posture (3), perceived workload (2)] were reported more common (27) compared to objective (15) approaches [muscular demand (14), kinematics (8), metabolic costs (5)]. High variability was also observed in the experimental methodologies, including control over activity, task physics/duration, sample size, and reported metrics/measures. In the current study, the detailed approaches, their subject-related factors, and observed trends have been discussed. In sum, a new guideline, including tools/technologies has been proposed that could be utilized for field evaluation of i-EXOs. Lastly, we discussed some of the common technical challenges experimenters face in evaluating i-EXOs in field environments. Efforts presented in this study seek to improve the generalizability in testing and implementing i-EXOs.
Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends
Recent advancements in exoskeleton technology, both passive and active, are driven by the need to enhance human capabilities across various industries as well as the need to provide increased safety for the human worker. This review paper examines the sensors, actuators, mechanisms, design, and applications of passive and active exoskeletons, providing an in-depth analysis of various exoskeleton technologies. The main scope of this paper is to examine the recent developments in the exoskeleton developments and their applications in different fields and identify research opportunities in this field. The paper examines the exoskeletons used in various industries as well as research-level prototypes of both active and passive types. Further, it examines the commonly used sensors and actuators with their advantages and disadvantages applicable to different types of exoskeletons. Communication protocols used in different exoskeletons are also discussed with the challenges faced.