Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
168 result(s) for "Expressió gènica"
Sort by:
A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts
Patients with follicular lymphoma have heterogeneous outcomes. Predictor models to distinguish, at diagnosis, between patients at high and low risk of progression are needed. The objective of this study was to use gene-expression profiling data to build and validate a predictive model of outcome for patients treated in the rituximab era. A training set of fresh-frozen tumour biopsies was prospectively obtained from 160 untreated patients with high-tumour-burden follicular lymphoma enrolled in the phase 3 randomised PRIMA trial, in which rituximab maintenance was evaluated after rituximab plus chemotherapy induction (median follow-up 6·6 years [IQR 6·0–7·0]). RNA of sufficient quality was obtained for 149 of 160 cases, and Affymetrix U133 Plus 2.0 microarrays were used for gene-expression profiling. We did a multivariate Cox regression analysis to identify genes with expression levels associated with progression-free survival independently of maintenance treatment in a subgroup of 134 randomised patients. Expression levels from 95 curated genes were then determined by digital expression profiling (NanoString technology) in 53 formalin-fixed paraffin-embedded samples of the training set to compare the technical reproducibility of expression levels for each gene between technologies. Genes with high correlation (>0·75) were included in an L2-penalised Cox model adjusted on rituximab maintenance to build a predictive score for progression-free survival. The model was validated using NanoString technology to digitally quantify gene expression in 488 formalin-fixed, paraffin-embedded samples from three independent international patient cohorts from the PRIMA trial (n=178; distinct from the training cohort), the University of Iowa/Mayo Clinic Lymphoma SPORE project (n=201), and the Barcelona Hospital Clinic (n=109). All tissue samples consisted of pretreatment diagnostic biopsies and were confirmed as follicular lymphoma grade 1–3a. The patients were all treated with regimens containing rituximab and chemotherapy, possibly followed by either rituximab maintenance or ibritumomab–tiuxetan consolidation. We determined an optimum threshold on the score to predict patients at low risk and high risk of progression. The model, including the multigene score and the threshold, was initially evaluated in the three validation cohorts separately. The sensitivity and specificity of the score for the prediction of the risk of lymphoma progression at 2 years were assessed on the combined validation cohorts. In the training cohort, the expression levels of 395 genes were associated with a risk of progression. 23 genes reflecting both B-cell biology and tumour microenvironment with correlation coefficients greater than 0·75 between the two technologies and sample types were retained to build a predictive model that identified a population at an increased risk of progression (p<0·0001). In a multivariate Cox model for progression-free survival adjusted on rituximab maintenance treatment and Follicular Lymphoma International Prognostic Index 1 (FLIPI-1) score, this predictor independently predicted progression (adjusted hazard ratio [aHR] of the high-risk group compared with the low-risk group 3·68, 95% CI 2·19–6·17 [p<0·0001]). The 5-year progression-free survival was 26% (95% CI 16–43) in the high-risk group and 73% (64–83) in the low-risk group. The predictor performances were confirmed in each of the individual validation cohorts (aHR comparing high-risk to low-risk groups 2·57 [95% CI 1·65–4·01] in cohort 1; 2·12 [1·32–3·39] in cohort 2; and 2·11 [1·01–4·41] in cohort 3). In the combined validation cohort, the median progression-free survival was 3·1 years (95% CI 2·4–4·8) in the high-risk group and 10·8 years (10·1–not reached) in the low-risk group (p<0·0001). The risk of lymphoma progression at 2 years was 38% (95% CI 29–46) in the high-risk group and 19% (15–24) in the low-risk group. In a multivariate analysis, the score predicted progression-free survival independently of anti-CD20 maintenance treatment and of the FLIPI score (aHR for the combined cohort 2·30, 95% CI 1·72–3·07). We developed and validated a robust 23-gene expression-based predictor of progression-free survival that is applicable to routinely available formalin-fixed, paraffin-embedded tumour biopsies from patients with follicular lymphoma at time of diagnosis. Applying this score could allow individualised therapy for patients according to their risk category. Roche, SIRIC Lyric, LYSARC, National Institutes of Health, the Henry J Predolin Foundation, and the Spanish Plan Nacional de Investigacion.
The Genotype-Tissue Expression (GTEx) project
Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.
Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies
Single-cell RNA sequencing is at the forefront of high-resolution phenotyping experiments for complex samples. Although this methodology requires specialized equipment and expertise, it is now widely applied in research. However, it is challenging to create broadly applicable experimental designs because each experiment requires the user to make informed decisions about sample preparation, RNA sequencing and data analysis. To facilitate this decision-making process, in this tutorial we summarize current methodological and analytical options, and discuss their suitability for a range of research scenarios. Specifically, we provide information about best practices for the separation of individual cells and provide an overview of current single-cell capture methods at different cellular resolutions and scales. Methods for the preparation of RNA sequencing libraries vary profoundly across applications, and we discuss features important for an informed selection process. An erroneous or biased analysis can lead to misinterpretations or obscure biologically important information. We provide a guide to the major data processing steps and options for meaningful data interpretation. These guidelines will serve as a reference to support users in building a single-cell experimental framework—from sample preparation to data interpretation—that is tailored to the underlying research context.
Comprehensive molecular portraits of human breast tumours
We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes ( TP53 , PIK3CA and GATA3 ) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3 , PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer. The Cancer Genome Atlas Network describe their multifaceted analyses of primary breast cancers, shedding light on breast cancer heterogeneity; although only three genes ( TP53 , PIK3CA and GATA3 ) are mutated at a frequency greater than 10% across all breast cancers, numerous subtype-associated and novel mutations were identified. Gene variation in breast cancer This Article from the Cancer Genome Atlas consortium describes a multifaceted analysis of primary breast cancers in 825 people. Exome sequencing, copy number variation, DNA methylation, messenger RNA arrays, microRNA sequencing and proteomic analyses were performed and integrated to shed light on breast-cancer heterogeneity. Just three genes — TP53 , PIK3CA and GATA3 — are mutated at greater than 10% frequency across all breast cancers. Many subtype-associated and novel mutations were identified, as well as two breast-cancer subgroups with specific signalling-pathway signatures. The analyses also suggest that much of the clinically observable plasticity and heterogeneity occurs within, and not across, the major subtypes of breast cancer.
p13CMFA: Parsimonious 13C metabolic flux analysis
Deciphering the mechanisms of regulation of metabolic networks subjected to perturbations, including disease states and drug-induced stress, relies on tracing metabolic fluxes. One of the most informative data to predict metabolic fluxes are 13C based metabolomics, which provide information about how carbons are redistributed along central carbon metabolism. Such data can be integrated using 13C Metabolic Flux Analysis (13C MFA) to provide quantitative metabolic maps of flux distributions. However, 13C MFA might be unable to reduce the solution space towards a unique solution either in large metabolic networks or when small sets of measurements are integrated. Here we present parsimonious 13C MFA (p13CMFA), an approach that runs a secondary optimization in the 13C MFA solution space to identify the solution that minimizes the total reaction flux. Furthermore, flux minimization can be weighted by gene expression measurements allowing seamless integration of gene expression data with 13C data. As proof of concept, we demonstrate how p13CMFA can be used to estimate intracellular flux distributions from 13C measurements and transcriptomics data. We have implemented p13CMFA in Iso2Flux, our in-house developed isotopic steady-state 13C MFA software. The source code is freely available on GitHub (https://github.com/cfoguet/iso2flux/releases/tag/0.7.2).
Proportionality: A Valid Alternative to Correlation for Relative Data
In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.
A benchmark for RNA-seq quantification pipelines
Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package ( http://bioconductor.org/packages/rnaseqcomp ). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.
Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component
Background: Somatic copy number aberrations (CNAs) are common acquired changes in cancer cells having an important role in the progression of colon cancer (colorectal cancer, CRC). This study aimed to perform a characterisation of CNA and their impact in gene expression. Methods: Copy number aberrations were inferred from SNP array data in a series of 99 CRC. Copy number aberration events were calculated and used to assess the association between copy number dosage, clinical and molecular characteristics of the tumours, and gene expression changes. All analyses were adjusted for the quantity of stroma in each sample, which was inferred from gene expression data. Results: High heterogeneity among samples was observed; the proportion of altered genome ranged between 0.04 and 26.6%. Recurrent CNA regions with gains were frequent in chromosomes 7p, 8q, 13q, and 20, whereas 8p, 17p, and 18 cumulated losses. A significant positive correlation was observed between the number of somatic mutations and total CNA (Spearman’s r =0.42, P =0.006). Approximately 37% of genes located in CNA regions changed their level of expression and the average partial correlation (adjusted for stromal content) with copy number was 0.54 (interquartile range 0.20 to 0.81). Altered genes showed enrichment in pathways relevant for CRC. Tumours classified as CMS2 and CMS4 by the consensus molecular subtyping showed higher frequency of CNA. Losses of one small region in 1p36.33, with gene CDK11B , were associated with poor prognosis. More than 66% of the recurrent CNA were validated in the The Cancer Genome Atlas (TCGA) data when analysed with the same procedure. Furthermore, 79% of the genes with altered expression in our data were validated in the TCGA. Conclusions: Although CNA are frequent events in microsatellite stable CRC, few focal recurrent regions were found. These aberrations have strong effects on gene expression and contribute to deregulate relevant cancer pathways. Owing to the diploid nature of stromal cells, it is important to consider the purity of tumour samples to accurately calculate CNA events in CRC.
Quantification of Gene expression patterns to reveal the origins of abnormal morphogenesis
The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying Geometric Morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of a Fgfr2 mutation associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations.
Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny
The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identification of transcription factor binding sites. Here we have focused on the Insulin Receptor (InR) expression from its P2 promoter in the Drosophila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila FOXO (dFOXO). We have finely characterized this transcription factor binding sites in vitro along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. Moreover, we have tested the effect of mutations in the characterized dFOXO sites of D. melanogaster in transgenic flies. The number of experimentally established binding sites varies across the 1.3 kb region of any particular species, and their distribution also differs among species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed uneven distribution of binding sites across this fragment might underlie their differential contribution to regulate InR transcription.