Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
922,764 result(s) for "Expression"
Sort by:
Cis–trans controls and regulatory novelty accompanying allopolyploidization
Allopolyploidy is a prevalent process in plants, having important physiological, ecological and evolutionary consequences. Transcriptomic responses to genomic merger and doubling have been demonstrated in many allopolyploid systems, encompassing a diversity of phenomena including homoeolog expression bias, genome dominance, expression-level dominance and revamping of co-expression networks. Notwithstanding the foregoing, there remains a need to develop a conceptual framework that will stimulate a deeper understanding of these diverse phenomena and their mechanistic interrelationships. Here we introduce considerations relevant to this framework with a focus on cis–trans interactions among duplicated genes and alleles in hybrids and allopolyploids. By extending classic allele-specific expression analysis to the allopolyploid level, we distinguish the distinct effects of progenitor regulatory interactions from the novel intergenomic interactions that arise from genome merger and allopolyploidization. This perspective informs experiments designed to reveal the molecular genetic basis of gene regulatory control, and will facilitate the disentangling of genetic from epigenetic and higher-order effects that impact gene expression. Finally, we suggest that the extended cis–trans model may help conceptually unify several presently disparate hallmarks of allopolyploid evolution, including genome-wide expression dominance and biased fractionation, and lead to a new level of understanding of phenotypic novelty accompanying polyploidy.
The Soybean Sugar Transporter GmSWEET15 Mediates Sucrose Export from Endosperm to Early Embryo
Soybean (Glycine max) seed is primarily composed of a mature embryo that provides a major source of protein and oil for humans and other animals. Early in development, the tiny embryos grow rapidly and acquire large quantities of sugars from the liquid endosperm of developing seeds. An insufficient supply of nutrients from the endosperm to the embryo results in severe seed abortion and yield reduction. Hence, an understanding of the molecular basis and regulation of assimilate partitioning involved in early embryo development is important for improving soybean seed yield and quality. Here, we used expression profiling analysis to show that two paralogous sugar transporter genes from the SWEET (Sugars Will Eventually be Exported Transporter) family, GmSWEET15a and GmSWEET15b, were highly expressed in developing soybean seeds. In situ hybridization and quantitative real-time PCR showed that both genes were mainly expressed in the endosperm at the cotyledon stage. GmSWEET15b showed both efflux and influx activities for sucrose in Xenopus oocytes. In Arabidopsis (Arabidopsis thaliana), knockout of three AtSWEET alleles is required to see a defective, but not lethal, embryo phenotype, whereas knockout of both GmSWEET15 genes in soybean caused retarded embryo development and endosperm persistence, resulting in severe seed abortion. In addition, the embryo sugar content of the soybean knockout mutants was greatly reduced. These results demonstrate that the plasma membrane sugar transporter, GmSWEET15, is essential for embryo development in soybean by mediating Suc export from the endosperm to the embryo early in seed development.
Make a face
Make a Face is a very fun interactive, concept driven-picture book that shows how different facial expressions connect with different emotions by pairing them with corresponding animals who \"come to life\" as children make different faces on cue.
A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants
A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta.
Advanced introduction to freedom of expression
Mark Tushnet presents a concise yet comprehensive overview of free expression law, understood as a form of constitutional law. Confronting the major issues of free expression - speech critical of government, libel law, hate speech regulation, and the emerging challenges posed by new technologies - he evaluates the key questions and potential difficulties for future generations. Contrasting the United States with current law in Europe and elsewhere, Tushnet argues that freedom of expression around the world should reflect deference to legislative judgements, unless those judgements reflect inadequate deliberation or bias, and that much of the existing free expression law is consistent with this view. Key features include: Comprehensible for both students of law and non-specialist readers interested in freedom of expression from a legal perspective; Viewpoints from multiple legal systems including analysis of decisions made by the US Supreme Court and the European Court of Human Rights; Explains the two legal doctrinal structures: categorical, rule-bound approaches and standards-based approaches; List of key references for further reading, allowing readers to extend their knowledge of the topic past the advanced introduction. This Advanced Introduction will be an essential foundational text for students of law, as well as those from a political science background who can view freedom of expression from a legal perspective.
Quantitative genetic analysis deciphers the impact of cis and trans regulation on cell-to-cell variability in protein expression levels
Identifying the factors that shape protein expression variability in complex multi-cellular organisms has primarily focused on promoter architecture and regulation of single-cell expression in cis. However, this targeted approach has to date been unable to identify major regulators of cell-to-cell gene expression variability in humans. To address this, we have combined single-cell protein expression measurements in the human immune system using flow cytometry with a quantitative genetics analysis. For the majority of proteins whose variability in expression has a heritable component, we find that genetic variants act in trans, with notably fewer variants acting in cis. Furthermore, we highlight using Mendelian Randomization that these variability-Quantitative Trait Loci might be driven by the cis regulation of upstream genes. This indicates that natural selection may balance the impact of gene regulation in cis with downstream impacts on expression variability in trans.