Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
124 result(s) for "Extinct birds Identification."
Sort by:
Vanished and vanishing parrots : profiling extinct and endangered species
\"Parrots comprise one of the most endangered groups of birds, with a growing number of species nearing extinction. The purpose of this book is to bring together information on species that have become extinct in historical times with information on species that are in danger of becoming extinct so that public awareness of the plight of these magnificent birds may be increased. The main text will comprise species accounts with accompanying illustrations. Vivid color plates will draw attention to the spectacular species that we have lost or that could be lost. There will be a comprehensive Introduction focusing on the three major regions of distribution, namely the Australasian distribution, the Afro-Asian distribution and the Neotropical distribution. The status of parrots in each of these distributions will be discussed, with particular attention given to threats that caused the extinction of species or are endangering extant species, as well as conservation measures being implemented or that should be implemented. Additionally, there will be an appendix with brief accounts of eight species with endangered subspecies. This will have a full-page color plate depicting these subspecies in field guide style illustrations\"-- Provided by publisher.
The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds
The diversification of neoavian birds is one of the most rapid adaptive radiations of extant organisms. Recent whole-genome sequence analyses have much improved the resolution of the neoavian radiation and suggest concurrence with the Cretaceous-Paleogene (K-Pg) boundary, yet the causes of the remaining genome-level irresolvabilities appear unclear. Here we show that genome-level analyses of 2,118 retrotransposon presence/absence markers converge at a largely consistent Neoaves phylogeny and detect a highly differential temporal prevalence of incomplete lineage sorting (ILS), i.e., the persistence of ancestral genetic variation as polymorphisms during speciation events. We found that ILS-derived incongruences are spread over the genome and involve 35% and 34% of the analyzed loci on the autosomes and the Z chromosome, respectively. Surprisingly, Neoaves diversification comprises three adaptive radiations, an initial near-K-Pg super-radiation with highly discordant phylogenetic signals from near-simultaneous speciation events, followed by two post-K-Pg radiations of core landbirds and core waterbirds with much less pronounced ILS. We provide evidence that, given the extreme level of up to 100% ILS per branch in super-radiations, particularly rapid speciation events may neither resemble a fully bifurcating tree nor are they resolvable as such. As a consequence, their complex demographic history is more accurately represented as local networks within a species tree.
A simple dynamic model explains the diversity of island birds worldwide
Colonization, speciation and extinction are dynamic processes that influence global patterns of species richness 1 – 6 . Island biogeography theory predicts that the contribution of these processes to the accumulation of species diversity depends on the area and isolation of the island 7 , 8 . Notably, there has been no robust global test of this prediction for islands where speciation cannot be ignored 9 , because neither the appropriate data nor the analytical tools have been available. Here we address both deficiencies to reveal, for island birds, the empirical shape of the general relationships that determine how colonization, extinction and speciation rates co-vary with the area and isolation of islands. We compiled a global molecular phylogenetic dataset of birds on islands, based on the terrestrial avifaunas of 41 oceanic archipelagos worldwide (including 596 avian taxa), and applied a new analysis method to estimate the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation). Our model predicts—with high explanatory power—several global relationships. We found a decline in colonization with isolation, a decline in extinction with area and an increase in speciation with area and isolation. Combining the theoretical foundations of island biogeography 7 , 8 with the temporal information contained in molecular phylogenies 10 proves a powerful approach to reveal the fundamental relationships that govern variation in biodiversity across the planet. Using a global molecular phylogenetic dataset of birds on islands, the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation) is estimated.
Wiped out by an earthquake? The 'extinct' Taiwanese swallowtail butterfly
For the first time, we obtained for the first time a COI DNA barcode from museum specimens of the Old World swallowtail butterfly endemic to Taiwan, Papilio machaon ssp. sylvina, that has disappeared since the devastating Jiji earthquake in 1999 that shook Central Taiwan. We demonstrate that this population was not only phenotypically distinct, but also had a unique mitochondrial haplotype among all other Holarctic populations of P. machaon. The life history of P. m. sylvina from rearing experiments carried out in the 1990s is illustrated and discussed.
An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern
Background Use of genomic tools to characterize wildlife populations has increased in recent years. In the past, genetic characterization has been accomplished with more traditional genetic tools (e.g., microsatellites). The explosion of genomic methods and the subsequent creation of large SNP datasets has led to the promise of increased precision in population genetic parameter estimates and identification of demographically and evolutionarily independent groups, as well as questions about the future usefulness of the more traditional genetic tools. At present, few empirical comparisons of population genetic parameters and clustering analyses performed with microsatellites and SNPs have been conducted. Results Here we used microsatellite and SNP data generated from Gunnison sage-grouse ( Centrocercus minimus ) samples to evaluate concordance of the results obtained from each dataset for common metrics of genetic diversity ( H O , H E , F IS , A R ) and differentiation ( F ST , G ST , D Jost ). Additionally, we evaluated clustering of individuals using putatively neutral (SNPs and microsatellites), putatively adaptive, and a combined dataset of putatively neutral and adaptive loci. We took particular interest in the conservation implications of any differences. Generally, we found high concordance between microsatellites and SNPs for H E , F IS , A R , and all differentiation estimates. Although there was strong correlation between metrics from SNPs and microsatellites, the magnitude of the diversity and differentiation metrics were quite different in some cases. Clustering analyses also showed similar patterns, though SNP data was able to cluster individuals into more distinct groups. Importantly, clustering analyses with SNP data suggest strong demographic independence among the six distinct populations of Gunnison sage-grouse with some indication of evolutionary independence in two or three populations; a finding that was not revealed by microsatellite data. Conclusion We demonstrate that SNPs have three main advantages over microsatellites: more precise estimates of population-level diversity, higher power to identify groups in clustering methods, and the ability to consider local adaptation. This study adds to a growing body of work comparing the use of SNPs and microsatellites to evaluate genetic diversity and differentiation for a species of conservation concern with relatively high population structure and using the most common method of obtaining SNP genotypes for non-model organisms.
Global raptor research and conservation priorities
Aim Raptors serve critical ecological functions, are particularly extinction‐prone and are often used as environmental indicators and flagship species. Yet, there is no global framework to prioritize research and conservation actions on them. We identify for the first time the factors driving extinction risk and scientific attention on raptors and develop a novel research and conservation priority index (RCPI) to identify global research and conservation priorities. Location Global. Methods We use random forest models based on ecological traits and extrinsic data to identify the drivers of risk and scientific attention in all raptors. We then map global research and conservation priorities. Lastly, we model where priorities fall relative to country‐level human social indicators. Results Raptors with small geographic ranges, scavengers, forest‐dependent species and those with slow life histories are particularly extinction‐prone. Research is extremely biased towards a small fraction of raptor species: 10 species (1.8% of all raptors) account for one‐third of all research, while one‐fifth of species have no publications. Species with small geographic ranges and those inhabiting less developed countries are greatly understudied. Regions of Latin America, Africa and Southeast Asia are identified as particularly high priority for raptor research and conservation. These priorities are highly concentrated in developing countries, indicating a global mismatch between priorities and capacity for research and conservation. Main conclusions A redistribution of scientific attention and conservation efforts towards developing tropical countries and the least‐studied, extinction‐prone species is critical to conserve raptors and their ecological functions worldwide. We identify clear taxonomic and geographic research and conservation priorities for all raptors, and our methodology can be applied across other taxa to prioritize scientific investment.
China's endemic vertebrates sheltering under the protective umbrella of the giant panda
The giant panda attracts disproportionate conservation resources. How well does this emphasis protect other endemic species? Detailed data on geographical ranges are not available for plants or invertebrates, so we restrict our analyses to 3 vertebrate taxa: birds, mammals, and amphibians. There are gaps in their protection, and we recommend practical actions to fill them. We identified patterns of species richness, then identified which species are endemic to China, and then which, like the panda, live in forests. After refining each species' range by its known elevational range and remaining forest habitats as determined from remote sensing, we identified the top 5% richest areas as the centers of endemism. Southern mountains, especially the eastern Hengduan Mountains, were centers for all 3 taxa. Over 96% of the panda habitat overlapped the endemic centers. Thus, investing in almost any panda habitat will benefit many other endemics. Existing panda national nature reserves cover all but one of the endemic species that overlap with the panda's distribution. Of particular interest are 14 mammal, 20 bird, and 82 amphibian species that are inadequately protected. Most of these species the International Union for Conservation of Nature currently deems threatened. But 7 mammal, 3 bird, and 20 amphibian species are currently nonthreatened, yet their geographical ranges are <20,000 km² after accounting for elevational restriction and remaining habitats. These species concentrate mainly in Sichuan, Yunnan, Nan Mountains, and Hainan. There is a high concentration in the east Daxiang and Xiaoxiang Mountains of Sichuan, where pandas are absent and where there are no national nature reserves. The others concentrate in Yunnan, Nan Mountains, and Hainan. Here, 10 prefectures might establish new protected areas or upgrade local nature reserves to national status.
Wiped out by an earthquake? The ‘extinct’ Taiwanese swallowtail butterfly (Lepidoptera, Papilionidae) was morphologically and genetically distinct
For the first time, we obtained for the first time a COI DNA barcode from museum specimens of the Old World swallowtail butterfly endemic to Taiwan, Papilio machaon ssp. sylvina , that has disappeared since the devastating Jiji earthquake in 1999 that shook Central Taiwan. We demonstrate that this population was not only phenotypically distinct, but also had a unique mitochondrial haplotype among all other Holarctic populations of P . machaon . The life history of P . m . sylvina from rearing experiments carried out in the 1990s is illustrated and discussed.
New enantiornithine diversity in the Hell Creek Formation and the functional morphology of the avisaurid tarsometatarsus
Enantiornithines were the most diverse group of birds during the Cretaceous, comprising over half of all known species from this period. The fossil record and subsequently our knowledge of this clade is heavily skewed by the wealth of material from Lower Cretaceous deposits in China. In contrast, specimens from Upper Cretaceous deposits are rare and typically fragmentary, yet critical for understanding the extinction of this clade across the K-Pg boundary. The most complete North American Late Cretaceous enantiornithine is Mirarce eatoni , a member of the diverse clade Avisauridae. Except for Mirarce , avisaurids are known only from isolated hindlimb elements from North and South America. Here we describe three new enantiornithines from the Maastrichtian Hell Creek Formation, two of which represent new avisaurid taxa. These materials represent a substantial increase in the known diversity of Enantiornithes in the latest Cretaceous. Re-examination of material referred to Avisauridae through phylogenetic analysis provides strong support for a more exclusive Avisauridae consisting of six taxa. Exploration of the functional morphology of the avisaurid tarsometatarsus indicates potential strong constriction and raptorial attributes. The lower aspect ratio of the tarsometatarsus facilitates a more biomechanically efficient lever system which in extant birds of prey equates to lifting proportionally heavier prey items. In addition, the proportional size and distal position of the m . tibialis cranialis tubercle of the tarsometatarsus is similar to the morphology seen in extant birds of prey. Together with the deeply-grooved metatarsal trochlea facilitating robust and likely powerful pedal digits, morphologies of the hindlimb suggest avisaurids as Late Cretaceous birds of prey.