Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15,419
result(s) for
"Extracellular RNA"
Sort by:
Extracellular vesicles in the diagnosis and treatment of central nervous system diseases
by
Solovyeva, Valeriya
,
Chulpanova, Daria
,
James, Victoria
in
Biomarkers
,
biomarkers; cell-mediated therapy; central nervous system diseases; diagnosis; exosomes; extracellular rnas; extracellular vesicles; micrornas; microvesicles; neurodegenerative diseases
,
Biosynthesis
2020
Extracellular vesicles, including exosomes and microvesicles, play a fundamental role in the activity of the nervous system, participating in signal transmission between neurons and providing the interaction of central nervous system with all body systems. In many neurodegenerative diseases, neurons pack toxic substances into vesicles and release them into the extracellular space, which leads to the spread of misfolded neurotoxic proteins. The contents of neuron-derived extracellular vesicles may indicate pathological changes in the central nervous system, and the analysis of extracellular vesicle molecular content contributes to the development of non-invasive methods for the diagnosis of many central nervous system diseases. Extracellular vesicles of neuronal origin can be isolated from various biological fluids due to their ability to cross the blood-brain barrier. Today, the diagnostic potential of almost all toxic proteins involved in nervous system disease pathogenesis, specifically α-synuclein, tau protein, superoxide dismutase 1, FUS, leucine-rich repeat kinase 2, as well as some synaptic proteins, has been well evidenced. Special attention is paid to extracellular RNAs mostly associated with extracellular vesicles, which are important in the onset and development of many neurodegenerative diseases. Depending on parental cell type, extracellular vesicles may have different therapeutic properties, including neuroprotective, regenerative, and anti-inflammatory. Due to nano size, biosafety, ability to cross the blood-brain barrier, possibility of targeted delivery and the lack of an immune response, extracellular vesicles are a promising vehicle for the delivery of therapeutic substances for the treatment of neurodegenerative diseases and drug delivery to the brain. This review describes modern approaches of diagnosis and treatment of central nervous system diseases using extracellular vesicles.
Journal Article
Extracellular vesicles and high‐density lipoproteins: Exercise and oestrogen‐responsive small RNA carriers
by
Laukkanen, Jari A.
,
Karvinen, Sira
,
Korhonen, Tia‐Marje
in
Accelerometers
,
acute exercise
,
Biomarkers
2023
Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c‐miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV‐carried miRs, the co‐isolation of high‐density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA‐derived sRNA. Furthermore, we demonstrate that oestrogen‐based hormonal therapy (HT) allows the acute exercise‐induced miR‐response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.
Journal Article
Biogenesis, delivery, and function of extracellular RNA
by
Patton, James G.
,
Greiner, Vanille J.
,
Weaver, Alissa M.
in
Animal communication
,
Biosynthesis
,
Brain cancer
2015
The Extracellular RNA (exRNA) Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s) by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.
Journal Article
Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium
by
Das, Saumya
,
Kalani, Yashar
,
Yeri, Ashish
in
Anticoagulants
,
Atoms & subatomic particles
,
Bias
2015
Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
Journal Article
Extracellular RNAs: development as biomarkers of human disease
by
Carter, Bob S.
,
Das, Saumya
,
Laurent, Louise C.
in
Alzheimer's disease
,
Biomarkers
,
Body fluids
2015
Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.
Journal Article
The NIH Extracellular RNA Communication Consortium
by
Howcroft, T. Kevin
,
Procaccini, Dena
,
Dugan, Vivien G.
in
Biodistribution
,
Biomarkers
,
Biomedical research
2015
The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c) identifying exRNA biomarkers of disease, (d) demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e) developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators.
Journal Article
Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells
by
van der Grein, Susanne G.
,
Buermans, Henk P. J.
,
t Hoen, Peter A. C.
in
Animals
,
Biochemistry
,
Biomarkers
2018
The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of intercellular communication. The molecular composition of EV, and thereby their signaling function to target cells, is regulated by cellular activation and differentiation stimuli. EV are regarded as snapshots of cells and are, therefore, in the limelight as biomarkers for disease. Although research on EV-associated RNA has predominantly focused on microRNAs, the transcriptome of EV consists of multiple classes of small non-coding RNAs with potential gene-regulatory functions. It is not known whether environmental cues imposed on cells induce specific changes in a broad range of EV-associated RNA classes. Here, we investigated whether immune-activating or -suppressing stimuli imposed on primary dendritic cells affected the release of various small non-coding RNAs via EV. The small RNA transcriptomes of highly pure EV populations free from ribonucleoprotein particles were analyzed by RNA sequencing and RT-qPCR. Immune stimulus-specific changes were found in the miRNA, snoRNA, and Y-RNA content of EV from dendritic cells, whereas tRNA and snRNA levels were much less affected. Only part of the changes in EV-RNA content reflected changes in cellular RNA, which urges caution in interpreting EV as snapshots of cells. By comprehensive analysis of RNA obtained from highly purified EV, we demonstrate that multiple RNA classes contribute to genetic messages conveyed via EV. The identification of multiple RNA classes that display cell stimulation-dependent association with EV is the prelude to unraveling the function and biomarker potential of these EV-RNAs.
Journal Article
Microbe-Host Communication by Small RNAs in Extracellular Vesicles: Vehicles for Transkingdom RNA Transportation
2019
Extracellular vesicles (EVs) are evolutionary well-conserved nano-sized membranous vesicles that are secreted by both prokaryotic and eukaryotic cells. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. In particular, small RNAs (sRNAs) contained within EVs have been considered as candidate interspecies-communication molecules, due to their demonstrated capacity to modulate gene expression in multiple cell types and species. While research into this field is in its infancy, elucidating the mechanisms that underlie host–microbe interactions and communications promises to impact many fields of biological research, including human health and medicine. Thus, this review discussed the results of recent studies that have examined the ways in which EVs and sRNAs mediate ‘microbe–host’ and ‘host–microbe’ interspecies communication.
Journal Article
Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against antimicrobials
by
Gopi, Sarves Mani
,
Pushparaj, Mahamahima Muthuswamy
,
Ragupathi, Harini
in
Addition polymerization
,
Antimicrobial agents
,
Biofilms
2024
Bacterial cells often exist in the form of sessile aggregates known as biofilms, which are polymicrobial in nature and can produce slimy Extracellular Polymeric Substances (EPS). EPS is often referred to as a biofilm matrix and is a heterogeneous mixture of various biomolecules such as polysaccharides, proteins, and extracellular DNA/RNA (eDNA/RNA). In addition, bacteriophage (phage) was also found to be an integral component of the matrix and can serve as a protective barrier. In recent years, the roles of proteins, polysaccharides, and phages in the virulence of biofilms have been well studied. However, a mechanistic understanding of the release of such biomolecules and their interactions with antimicrobials requires a thorough review. Therefore, this article critically reviews the various mechanisms of release of matrix polymers. In addition, this article also provides a contemporary understanding of interactions between various biomolecules to protect biofilms against antimicrobials. In summary, this article will provide a thorough understanding of the functions of various biofilm matrix molecules.
Journal Article
Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles
2016
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.
Journal Article