Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
370 result(s) for "Extracellular Vesicles - ultrastructure"
Sort by:
Circulating Extracellular Vesicles in Human Disease
Circulating extracellular vesicles, which are produced by normal and diseased tissues and released into body fluids, can be markers of disease processes and perhaps even tools to deliver new therapies.
Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or ‘omics’ technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems. Understanding the heterogeneity of extracellular vesicles is crucial for unraveling their functions. This review describes the benefits, challenges and contributions of the state-of-the art methods used in single-vesicle analysis.
A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure
Disassembly of apoptotic cells into smaller fragments (a form of extracellular vesicle called apoptotic bodies) can facilitate removal of apoptotic debris and intercellular communication. However, the mechanism underpinning this process is unclear. While observing monocytes undergoing apoptosis by time-lapse microscopy, we discovered a new type of membrane protrusion that resembles a ‘beads-on-a-string’ structure. Strikingly, the ‘beads’ are frequently sheared off the ‘string’ to form apoptotic bodies. Generation of apoptotic bodies via this mechanism can facilitate a sorting process and results in the exclusion of nuclear contents from apoptotic bodies. Mechanistically, generation of ‘beads-on-a-string’ protrusion is controlled by the level of actomyosin contraction and apoptopodia formation. Furthermore, in an unbiased drug screen, we identified the ability of sertraline (an antidepressant) to block the formation of ‘beads-on-a-string’ protrusions and apoptotic bodies. These data uncover a new mechanism of apoptotic body formation in monocytes and also compounds that can modulate this process. During apoptosis, cells break up into smaller fragments to facilitate removal. Here the authors characterize a beads-on-a-string structure formed by monocytes undergoing apoptosis in vitro , which shears into apoptotic bodies lacking nuclear contents, and is blocked by the antidepressant sertraline.
Candida albicans biofilm–induced vesicles confer drug resistance through matrix biogenesis
Cells from all kingdoms of life produce extracellular vesicles (EVs). Their cargo is protected from the environment by the surrounding lipid bilayer. EVs from many organisms have been shown to function in cell-cell communication, relaying signals that impact metazoan development, microbial quorum sensing, and pathogenic host-microbe interactions. Here, we have investigated the production and functional activities of EVs in a surface-associated microbial community or biofilm of the fungal pathogen Candida albicans. Crowded communities like biofilms are a context in which EVs are likely to function. Biofilms are noteworthy because they are encased in an extracellular polymeric matrix and because biofilm cells exhibit extreme tolerance to antimicrobial compounds. We found that biofilm EVs are distinct from those produced by free-living planktonic cells and display strong parallels in composition to biofilm matrix material. The functions of biofilm EVs were delineated with a panel of mutants defective in orthologs of endosomal sorting complexes required for transport (ESCRT) subunits, which are required for normal EV production in diverse eukaryotes. Most ESCRT-defective mutations caused reduced biofilm EV production, reduced matrix polysaccharide levels, and greatly increased sensitivity to the antifungal drug fluconazole. Matrix accumulation and drug hypersensitivity of ESCRT mutants were reversed by addition of wild-type (WT) biofilm EVs. Vesicle complementation showed that biofilm EV function derives from specific cargo proteins. Our studies indicate that C. albicans biofilm EVs have a pivotal role in matrix production and biofilm drug resistance. Biofilm matrix synthesis is a community enterprise; prior studies of mixed cell biofilms have demonstrated extracellular complementation. Therefore, EVs function not only in cell-cell communication but also in the sharing of microbial community resources.
Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins
The isolation of extracellular vesicles (EVs) from blood is of great importance to understand the biological role of circulating EVs and to develop EVs as biomarkers of disease. Due to the concurrent presence of lipoprotein particles, however, blood is one of the most difficult body fluids to isolate EVs from. The aim of this study was to develop a robust method to isolate and characterise EVs from blood with minimal contamination by plasma proteins and lipoprotein particles. Plasma and serum were collected from healthy subjects, and EVs were isolated by size-exclusion chromatography (SEC), with most particles being present in fractions 8–12, while the bulk of the plasma proteins was present in fractions 11–28. Vesicle markers peaked in fractions 7–11; however, the same fractions also contained lipoprotein particles. The purity of EVs was improved by combining a density cushion with SEC to further separate lipoprotein particles from the vesicles, which reduced the contamination of lipoprotein particles by 100-fold. Using this novel isolation procedure, a total of 1187 proteins were identified in plasma EVs by mass spectrometry, of which several proteins are known as EV-associated proteins but have hitherto not been identified in the previous proteomic studies of plasma EVs. This study shows that SEC alone is unable to completely separate plasma EVs from lipoprotein particles. However, combining SEC with a density cushion significantly improved the separation of EVs from lipoproteins and allowed for a detailed analysis of the proteome of plasma EVs, thus making blood a viable source for EV biomarker discovery.
CryoET of β-amyloid and tau within postmortem Alzheimer’s disease brain
A defining pathological feature of most neurodegenerative diseases is the assembly of proteins into amyloid that form disease-specific structures 1 . In Alzheimer’s disease, this is characterized by the deposition of β-amyloid and tau with disease-specific conformations. The in situ structure of amyloid in the human brain is unknown. Here, using cryo-fluorescence microscopy-targeted cryo-sectioning, cryo-focused ion beam-scanning electron microscopy lift-out and cryo-electron tomography, we determined in-tissue architectures of β-amyloid and tau pathology in a postmortem Alzheimer’s disease donor brain. β-amyloid plaques contained a mixture of fibrils, some of which were branched, and protofilaments, arranged in parallel arrays and lattice-like structures. Extracellular vesicles and cuboidal particles defined the non-amyloid constituents of β-amyloid plaques. By contrast, tau inclusions formed parallel clusters of unbranched filaments. Subtomogram averaging a cluster of 136 tau filaments in a single tomogram revealed the polypeptide backbone conformation and filament polarity orientation of paired helical filaments within tissue. Filaments within most clusters were similar to each other, but were different between clusters, showing amyloid heterogeneity that is spatially organized by subcellular location. The in situ structural approaches outlined here for human donor tissues have applications to a broad range of neurodegenerative diseases. The in-tissue architectures of β-amyloid and tau pathology in a postmortem Alzheimer’s disease donor brain are determined, showing fibril heterogeneity is spatially organized by subcellular location and suggesting applications to a broad range of neurodegenerative diseases.
Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods
Extracellular vesicles (EVs) are cell-derived membranous vesicles secreted by cells into the extracellular space, which play a role in cell to cell communication. EVs are categorized into 3 groups depending on their size, surface marker, and method of release from the host cell. Recently, EVs have become of interest in the study of multiple disease etiologies and are believed to be potential biomarkers for many diseases. Multiple different methods have been developed to isolate EVs from different samples such as cell culture medium, serum, blood, and urine. Once isolated, EVs can be characterized by technology such as nanotracking analysis, dynamic light scattering, and nanoscale flow cytometry. In this review, we summarize the current methods of EV isolation, provide details into the three methods of EV characterization, and provide insight into which isolation approaches are most suitable for EV isolation from bronchoalveolar lavage fluid (BALF).
Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid
Extracellular vesicles (EVs) are membrane-enclosed vesicles which play important role for cell communication and physiology. EVs are found in many human biological fluids, including blood, breast milk, urine, cerebrospinal fluid (CSF), ejaculate, saliva etc. These nano-sized vesicles contain proteins, mRNAs, microRNAs, non-coding RNAs and lipids that are derived from producing cells. EVs deliver complex sets of biological information to recipient cells thereby modulating their behaviors by their molecular cargo. In this way EVs are involved in the pathological development and progression of many human disorders, including neurodegenerative diseases. In this study EVs purified by ultracentrifugation from CSF of patients with Parkinson's disease (PD) and individuals of the comparison group were characterized using nanoparticle tracking analysis, flow cytometry and cryo-electron microscopy. Vesicular size and the presence of exosomal marker CD9 on the surface provided evidence that most of the EVs were exosome-like vesicles. Cryo-electron microscopy allowed us to visualize a large spectrum of extracellular vesicles of various size and morphology with lipid bilayers and vesicular internal structures. Thus, we described the diversity and new characteristics of the vesicles from CSF suggesting that subpopulations of EVs with different and specific functions may exist.
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs. The physiological role of crosstalk between mesenchymal stem cells (MSC) and macrophages is unclear. Here, Phinney et al . show that MSCs transfer mitochondria to macrophages under oxidative stress, and desensitize macrophages to mitochondria by using microvesicles to repress Toll receptor signalling.
Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis
Necroptosis is a regulated, nonapoptotic form of cell death initiated by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins. It is considered to be a form of regulated necrosis, and, by lacking the \"find me\" and \"eat me\" signals that are a feature of apoptosis, necroptosis is considered to be inflammatory. One such \"eat me\" signal observed during apoptosis is the exposure of phosphatidylserine (PS) on the outer plasma membrane. Here, we demonstrate that necroptotic cells also expose PS after phosphorylated mixed lineage kinase-like (pMLKL) translocation to the membrane. Necroptotic cells that expose PS release extracellular vesicles containing proteins and pMLKL to their surroundings. Furthermore, inhibition of pMLKL after PS exposure can reverse the process of necroptosis and restore cell viability. Finally, externalization of PS by necroptotic cells drives recognition and phagocytosis, and this may limit the inflammatory response to this nonapoptotic form of cell death. The exposure of PS to the outer membrane and to extracellular vesicles is therefore a feature of necroptotic cell death and may serve to provide an immunologically-silent window by generating specific \"find me\" and \"eat me\" signals.