Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,298
result(s) for
"Eye Diseases - genetics"
Sort by:
Characterising the refractive error in paediatric patients with congenital stationary night blindness: a multicentre study
by
De Baere, Elfride
,
Munier, Francis L
,
Balikova, Irina
in
Adolescent
,
Calcium Channels, L-Type - genetics
,
Child
2025
Background/AaimsCongenital stationary night blindness (CSNB) is an inherited retinal disease that is often associated with high myopia and can be caused by pathological variants in multiple genes, most commonly CACNA1F, NYX and TRPM1. High myopia is associated with retinal degeneration and increased risk for retinal detachment. Slowing the progression of myopia in patients with CSNB would likely be beneficial in reducing risk, but before interventions can be considered, it is important to understand the natural history of myopic progression.MethodsThis multicentre, retrospective study explored CSNB caused by variants in CACNA1F, NYX or TRPM1 in patients who had at least 6 measurements of their spherical equivalent of refraction (SER) before the age of 18. A mixed-effect model was used to predict progression of SER overtime and differences between genotypes were evaluated.Results78 individuals were included in this study. All genotypes showed a significant myopic predicted SER at birth (−3.076D, −5.511D and −5.386D) for CACNA1F, NYX and TRPM1 respectively. Additionally, significant progression of myopia per year (−0.254D, −0.257D and −0.326D) was observed for all three genotypes CACNA1F, NYX and TRPM1, respectively.ConclusionsPatients with CSNB tend to be myopic from an early age and progress to become more myopic with age. Patients may benefit from long-term myopia slowing treatment in the future and further studies are indicated. Additionally, CSNB should be considered in the differential diagnosis for early-onset myopia.
Journal Article
Evaluation of somatic and/or germline mosaicism in congenital malformation of the eye
by
Capri, Yline
,
Habib, Christophe
,
Chassaing, Nicolas
in
Anophthalmia
,
Asymptomatic
,
Bioinformatics
2023
Microphthalmia, Anophthalmia and Coloboma (MAC) form a spectrum of congenital eye malformations responsible for severe visual impairment. Despite the exploration of hundreds of genes by High-Throughput Sequencing (HTS), most of the patients remain without genetic diagnosis. One explanation could be the not yet demonstrated involvement of somatic mosaicism (undetected by conventional analysis pipelines) in those patients. Furthermore, the proportion of parental germline mosaicism in presumed de novo variations is still unknown in ocular malformations. Thus, using dedicated bioinformatics pipeline designed to detect mosaic variants, we reanalysed the sequencing data obtained from a 119 ocular development genes panel performed on blood samples of 78 probands with sporadic MAC without genetic diagnosis. Using the same HTS strategy, we sequenced 80 asymptomatic parents of 41 probands carrying a disease-causing variant in an ocular development gene considered de novo after Sanger sequencing of both parents. Reanalysis of the previously sequencing data did not find any mosaic variant in probands without genetic diagnosis. However, HTS of parents revealed undetected SOX2 and PAX6 mosaic variants in two parents. Finally, this work, performed on two large cohorts of patients with MAC spectrum, provides for the first time an overview of the interest of looking for mosaicism in ocular development disorders. Somatic mosaicism does not appear to be frequent in MAC spectrum and might explain only few diagnoses. Thus, other approaches such as whole genome sequencing should be considered in those patients. Parental mosaicism is however not that rare (around 5%) and challenging for genetic counselling.
Journal Article
Genome-wide association study using the ethnicity-specific Japonica array: identification of new susceptibility loci for cold medicine-related Stevens–Johnson syndrome with severe ocular complications
2017
A genome-wide association study (GWAS) for cold medicine-related Stevens-Johnson syndrome (CM-SJS) with severe ocular complications (SOC) was performed in a Japanese population. A recently developed ethnicity-specific array with genome-wide imputation that was based on the whole-genome sequences of 1070 unrelated Japanese individuals was used. Validation analysis with additional samples from Japanese individuals and replication analysis using samples from Korean individuals identified two new susceptibility loci on chromosomes 15 and 16. This study might suggest the usefulness of GWAS using the ethnicity-specific array and genome-wide imputation based on large-scale whole-genome sequences. Our findings contribute to the understanding of genetic predisposition to CM-SJS with SOC.
Journal Article
Acceptability of Telegenetics for Families with Genetic Eye Diseases
2021
Healthcare providers around the world have implemented remote routine consultations to minimise disruption during the COVID-19 pandemic. Virtual clinics are particularly suitable for patients with genetic eye diseases as they rely on detailed histories with genetic counselling. During April–June 2019, the opinion of carers of children with inherited eye disorders attending the ocular genetics service at Moorfields Eye Hospital NHS Foundation Trust (MEH) were canvassed. Sixty-five percent of families (n = 35/54) preferred to have investigations carried out locally rather than travel to MEH, with 64% opting for a virtual consultation to interpret the results. The most popular mode of remote contact was via telephone (14/31), with video call being least preferred (8/31). Hence, 54 families who had received a telephone consultation mid-pandemic (November 2020–January 2021) were contacted to re-evaluate the acceptability of telegenetics using the Clinical Genetics Satisfaction Indicator and Telemedicine Satisfaction Questionnaire. Overall, 50 carers participated (response rate 93%); 58% of participants found teleconsultations acceptable and 54% agreed they increased their access to care, but 67.5% preferred to be seen in person. Patient satisfaction was high with 90% strongly agreeing/agreeing they shared and received all necessary information. Ocular genetics is well-suited for remote service delivery, ideally alternated with face-to-face consultations.
Journal Article
Exome sequencing and analysis of 454,787 UK Biobank participants
by
Jones, Marcus
,
Benner, Christian
,
Gurski, Lauren
in
45/23
,
631/208/205/2138
,
631/208/457/649/2219
2021
A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing
1
to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study
2
. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at
P
≤ 2.18 × 10
−11
. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (
SLC9A3R2
), diabetes (
MAP3K15
,
FAM234A
) and asthma (
SLC27A3
). Six genes were associated with brain imaging phenotypes, including two involved in neural development (
GBE1
,
PLD1
). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene–trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.
Whole-exome sequencing analysis of 454,787 individuals in the UK Biobank is used to examine the association of protein-coding variants with nearly 4,000 health-related traits, identifying 564 distinct genes with significant trait associations.
Journal Article
Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways
by
Sabanayagam, Charumathi
,
Wong, Chee Wai
,
Cheng, Ching-Yu
in
age-related macular degeneration
,
cataract
,
chronic kidney disease
2014
Chronic kidney disease is an emerging health problem worldwide. The eye shares striking structural, developmental, and genetic pathways with the kidney, suggesting that kidney disease and ocular disease may be closely linked. A growing number of studies have found associations of chronic kidney disease with age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. In addition, retinal microvascular parameters have been shown to be predictive of chronic kidney disease. Chronic kidney disease shares common vascular risk factors including diabetes, hypertension, smoking, and obesity, and pathogenetic mechanisms including inflammation, oxidative stress, endothelial dysfunction, and microvascular dysfunction, with ocular diseases supporting the ‘Common Soil Hypothesis.’ In this review, we present major epidemiological evidence for these associations and explore underlying pathogenic mechanisms and common risk factors for kidney and ocular disease. Understanding the link between kidney and ocular disease can lead to the development of new treatment and screening strategies for both diseases.
Journal Article
A cross-platform approach identifies genetic regulators of human metabolism and health
2021
In cross-platform analyses of 174 metabolites, we identify 499 associations (
P
< 4.9 × 10
−10
) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at
GLP2R
(p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
A large-scale genome-wide meta-analysis conducted across different platforms identifies genetic loci regulating levels of circulating metabolites.
Journal Article
Hooked! Modeling human disease in zebrafish
2012
Zebrafish have been widely used as a model system for studying developmental processes, but in the last decade, they have also emerged as a valuable system for modeling human disease. The development and function of zebrafish organs are strikingly similar to those of humans, and the ease of creating mutant or transgenic fish has facilitated the generation of disease models. Here, we highlight the use of zebrafish for defining disease pathways and for discovering new therapies.
Journal Article
Diagnostic genome sequencing improves diagnostic yield: a prospective single-centre study in 1000 patients with inherited eye diseases
by
Weisschuh, Nicole
,
Ossowski, Stephan
,
Schaeferhoff, Karin
in
Base Sequence
,
Bioinformatics
,
Blood levels
2024
PurposeGenome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses ‘beyond the exome’ in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION).MethodsPCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation.ResultsA definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants.ConclusionGS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.
Journal Article
Protein kinase CK2: a potential therapeutic target for diverse human diseases
2021
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia–reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Journal Article