Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
57
result(s) for
"FANCC protein"
Sort by:
Gemcitabine and cisplatin plus nivolumab as organ-sparing treatment for muscle-invasive bladder cancer: a phase 2 trial
by
Samstein, Robert M.
,
Wang, Li
,
Gogerly-Moragoda, Mahalya
in
692/308/2779/109/1941
,
692/308/575
,
692/699/67/1059/2325
2023
Cystectomy is a standard treatment for muscle-invasive bladder cancer (MIBC), but it is life-altering. We initiated a phase 2 study in which patients with MIBC received four cycles of gemcitabine, cisplatin, plus nivolumab followed by clinical restaging. Patients achieving a clinical complete response (cCR) could proceed without cystectomy. The co-primary objectives were to assess the cCR rate and the positive predictive value of cCR for a composite outcome: 2-year metastasis-free survival in patients forgoing immediate cystectomy or
Journal Article
Pituitary stalk interruption syndrome is characterized by genetic heterogeneity
by
McElreavey, Ken
,
Bignon-Topalovic, Joelle
,
Brauner, Raja
in
7-Dehydrocholesterol reductase
,
Anomalies
,
Atrophy
2020
Pituitary stalk interruption syndrome is a rare disorder characterized by an absent or ectopic posterior pituitary, interrupted pituitary stalk and anterior pituitary hypoplasia, as well as in some cases, a range of heterogeneous somatic anomalies. A genetic cause is identified in only around 5% of all cases. Here, we define the genetic variants associated with PSIS followed by the same pediatric endocrinologist. Exome sequencing was performed in 52 (33 boys and 19 girls), including 2 familial cases single center pediatric cases, among them associated 36 (69.2%) had associated symptoms or syndromes. We identified rare and novel variants in genes (37 families with 39 individuals) known to be involved in one or more of the following—midline development and/or pituitary development or function ( BMP4 , CDON , GLI2 , GLI3 , HESX1 , KIAA0556 , LHX9 , NKX2-1 , PROP1 , PTCH1 , SHH , TBX19 , TGIF1 ), syndromic and non-syndromic forms of hypogonadotropic hypogonadism ( CCDC141 , CHD7 , FANCA , FANCC , FANCD2 , FANCE , FANCG , IL17RD , KISS1R , NSMF , PMM2 , SEMA3E , WDR11 ), syndromic forms of short stature ( FGFR3 , NBAS , PRMT7 , RAF1 , SLX4 , SMARCA2 , SOX11 ), cerebellum atrophy with optic anomalies ( DNMT1 , NBAS ), axonal migration ( ROBO1 , SLIT2 ), and agenesis of the corpus callosum ( ARID1B , CC2D2A , CEP120 , CSPP1 , DHCR7 , INPP5E , VPS13B , ZNF423 ). Pituitary stalk interruption syndrome is characterized by a complex genetic heterogeneity, that reflects a complex phenotypic heterogeneity. Seizures, intellectual disability, micropenis or cryptorchidism, seen at presentation are usually considered as secondary to the pituitary deficiencies. However, this study shows that they are due to specific gene mutations. PSIS should therefore be considered as part of the phenotypic spectrum of other known genetic syndromes rather than as specific clinical entity.
Journal Article
Structure of the FA core ubiquitin ligase closing the ID clamp on DNA
by
Pavletich, Nikola P.
,
Yaseen, Ayat
,
Wang, Shengliu
in
101/28
,
631/337/1427/2566
,
631/45/474/2073
2021
The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks. Central to the pathway is the FA core complex, a ubiquitin ligase of nine subunits that monoubiquitinates the FANCI–FANCD2 (ID) DNA clamp. The 3.1 Å structure of the 1.1-MDa human FA core complex, described here, reveals an asymmetric assembly with two copies of all but the FANCC, FANCE and FANCF subunits. The asymmetry is crucial, as it prevents the binding of a second FANCC–FANCE–FANCF subcomplex that inhibits the recruitment of the UBE2T ubiquitin conjugating enzyme, and instead creates an ID binding site. A single active site then ubiquitinates FANCD2 and FANCI sequentially. We also present the 4.2-Å structures of the human core–UBE2T–ID–DNA complex in three conformations captured during monoubiquitination. They reveal the core–UBE2T complex remodeling the ID–DNA complex, closing the clamp on the DNA before ubiquitination. Monoubiquitination then prevents clamp opening after release from the core.
Cryo-EM structures of the Fanconi anemia core complex reveal insights into the remodeling of the FANCI–FANCD2 DNA clamp, which is essential during the repair of DNA interstrand crosslinks.
Journal Article
Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients
2020
Fanconi anemia (FA) is caused by biallelic mutations in FA genes. Monoallelic mutations in five of these genes (BRCA1, BRCA2, PALB2, BRIP1 and RAD51C) increase the susceptibility to breast/ovarian cancer and are used in clinical diagnostics as bona-fide hereditary cancer genes. Increasing evidence suggests that monoallelic mutations in other FA genes could predispose to tumor development, especially breast cancer. The objective of this study is to assess the mutational spectrum of 14 additional FA genes (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FANCP, FANCQ, FANCR and FANCU) in a cohort of hereditary cancer patients, to compare with local cancer-free controls as well as GnomAD. A total of 1021 hereditary cancer patients and 194 controls were analyzed using our next generation custom sequencing panel. We identified 35 pathogenic variants in eight genes. A significant association with the risk of breast cancer/breast and ovarian cancer was found for carriers of FANCA mutations (odds ratio (OR) = 3.14 95% confidence interval (CI) 1.4–6.17, p = 0.003). Two patients with early-onset cancer showed a pathogenic FA variant in addition to another germline mutation, suggesting a modifier role for FA variants. Our results encourage a comprehensive analysis of FA genes in larger studies to better assess their role in cancer risk.
Journal Article
Precision medicine phase II study evaluating the efficacy of a double immunotherapy by durvalumab and tremelimumab combined with olaparib in patients with solid cancers and carriers of homologous recombination repair genes mutation in response or stable after olaparib treatment
by
Limagne, Emeric
,
Thibaudin, Marion
,
Rederstorff, Emilie
in
Antibodies, Monoclonal - administration & dosage
,
Antibodies, Monoclonal, Humanized - administration & dosage
,
Antineoplastic Agents - therapeutic use
2020
Background
Tumors with deficient homologous repair are sensitive to PARP inhibitors such as olaparib which is known to have immunogenic properties. Durvalumab (D) is a human monoclonal antibody (mAb) which inhibits binding of programmed cell death ligand 1 (PD-L1) to its receptor. Tremelimumab (T) is a mAb directed against the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). This study is designed to evaluate the efficacy of combination of olaparib, durvalumab and tremelimumab in patients with a solid tumors with a mutation in homologous gene repair.
Methods
This phase II study will assess the efficacy and safety of olaparib/D/T association in patients (
n
= 213) with several types of solid cancers (breast cancer, ovarian cancer, pancreatic cancer, endometrial cancer, prostate cancer and others) with at least one mutation in homologous repair genes (
BRCA1, BRCA2, PALB2, ATM, FANCA, FANCB, FANCC, FANCE, FANCF, CHEK2, RAD51, BARD1, MRE11, RAD50, NBS1, HDAC2), LKB1/STK11, INPP4B, STAG2, ERG, CHEK1, BLM, LIG4, ATR, ATRX, CDK12
). Good performance status patients and corresponding to specific inclusion criteria of each cohort will be eligible. STEP1: Patients will receive olaparib 300 mg BID. In absence of progression after 6 weeks of olaparib, they will follow STEP 2 with olaparib and immunotherapy by durvalumab (1500 mg Q4W) + tremelimumab (75 mg IV Q4W) during 4 months and will further pursue durvalumab alone until disease progression, death, intolerable toxicity, or patient/investigator decision to stop (for a maximum duration of 24 months, and 36 months for ovarian cohort). Primary endpoint is safety and efficacy according to progression-free survival (PFS) of olaparib + immunotherapy (durvalumab + tremelimumab) during 4 months followed by durvalumab alone as maintenance in patients with solid cancers and in response or stable, after prior molecular target therapy by olaparib; secondary endpoints include overall survival (OS), disease control rate (DCR), response rate after 6 weeks of olaparib, safety of olaparib/durvalumab/tremelimumab association. Blood, plasma and tumor tissue will be collected for potential prognostic and predictive biomarkers.
Discussion
This study is the first trial to test the combination of olaparib and double immunotherapy based on molecular screening.
Trial registration
NCT04169841
, date of registration November 20, 2019
Journal Article
High molecular diagnostic yields and novel phenotypic expansions involving syndromic anorectal malformations
2023
Evidence suggests that genetic factors contribute to the development of anorectal malformations (ARMs). However, the etiology of the majority of ARMs cases remains unclear. Exome sequencing (ES) may be underutilized in the diagnostic workup of ARMs due to uncertainty regarding its diagnostic yield. In a clinical database of ~17,000 individuals referred for ES, we identified 130 individuals with syndromic ARMs. A definitive or probable diagnosis was made in 45 of these individuals for a diagnostic yield of 34.6% (45/130). The molecular diagnostic yield of individuals who initially met criteria for VACTERL association was lower than those who did not (26.8% vs 44.1%; p = 0.0437), suggesting that non-genetic factors may play an important role in this subset of syndromic ARM cases. Within this cohort, we identified two individuals who carried de novo pathogenic frameshift variants in ADNP, two individuals who were homozygous for pathogenic variants in BBS1, and single individuals who carried pathogenic or likely pathogenic variants in CREBBP, EP300, FANCC, KDM6A, SETD2, and SMARCA4. The association of these genes with ARMs was supported by previously published cases, and their similarity to known ARM genes as demonstrated using a machine learning algorithm. These data suggest that ES should be considered for all individuals with syndromic ARMs in whom a molecular diagnosis has not been made, and that ARMs represent a low penetrance phenotype associated with Helsmoortel-van der Aa syndrome, Bardet-Biedl syndrome 1, Rubinstein-Taybi syndromes 1 and 2, Fanconi anemia group C, Kabuki syndrome 2, SETD2-related disorders, and Coffin-Siris syndrome 4.
Journal Article
Germline Mutations in Cancer Predisposition Genes are Frequent in Sporadic Sarcomas
2017
Associations of sarcoma with inherited cancer syndromes implicate genetic predisposition in sarcoma development. However, due to the apparently sporadic nature of sarcomas, little attention has been paid to the role genetic susceptibility in sporadic sarcoma. To address this, we performed targeted-genomic sequencing to investigate the prevalence of germline mutations in known cancer-associated genes within an Asian cohort of sporadic sarcoma patients younger than 50 years old. We observed 13.6% (n = 9) amongst 66 patients harbour at least one predicted pathogenic germline mutation in 10 cancer-associated genes including
ATM
,
BRCA2, ERCC4, FANCC, FANCE, FANCI, MSH6, POLE, SDHA
and
TP53
. The most frequently affected genes are involved in the DNA damage repair pathway, with a germline mutation prevalence of 10.6%. Our findings suggests that genetic predisposition plays a larger role than expected in our Asian cohort of sporadic sarcoma, therefore clinicians should be aware of the possibility that young sarcoma patients may be carriers of inherited mutations in cancer genes and should be considered for genetic testing, regardless of family history. The prevalence of germline mutations in DNA damage repair genes imply that therapeutic strategies exploiting the vulnerabilities resulting from impaired DNA repair may be promising areas for translational research.
Journal Article
FANCC deficiency mediates microglial pyroptosis and secondary neuronal apoptosis in spinal cord contusion
2022
Background
Traumatic spinal cord injury (SCI)-induced neuroinflammation results in secondary neurological destruction and functional disorder. Previous findings showed that microglial pyroptosis plays a crucial role in neuroinflammation. Thus, it is necessary to conduct a comprehensive investigation of the mechanisms associated with post-SCI microglial pyroptosis. The Fanconi Anemia Group C complementation group gene (FANCC) has been previously reported to have an anti-inflammation effect; however, whether it can regulate microglial pyroptosis remains unknown. Therefore, we probed the mechanism associated with FANCC-mediated microglial pyroptosis and neuroinflammation in vitro and in vivo in SCI mice.
Methods
Microglial pyroptosis was assessed by western blotting (WB) and immunofluorescence (IF), whereas microglial-induced neuroinflammation was evaluated by WB, Enzyme-linked immunosorbent assays and IF. Besides, flow cytometry, TdT-mediated dUTP Nick-End Labeling staining and WB were employed to examine the level of neuronal apoptosis. Morphological changes in neurons were assessed by hematoxylin–eosin and Luxol Fast Blue staining. Finally, locomotor function rehabilitation was analyzed using the Basso Mouse Scale and Louisville Swim Scale.
Results
Overexpression of FANCC suppressed microglial pyroptosis via inhibiting p38/NLRP3 expression, which in turn reduced neuronal apoptosis. By contrast, knockdown of FANCC increased the degree of neuronal apoptosis by aggravating microglial pyroptosis. Besides, increased glial scar formation, severe myelin sheath destruction and poor axon outgrowth were observed in the mice transfected with short hairpin RNA of FANCC post SCI, which caused reduced locomotor function recovery.
Conclusions
Taken together, a previously unknown role of FANCC was identified in SCI, where its deficiency led to microglia pyroptosis, neuronal apoptosis and neurological damage. Mechanistically, FANCC mediated microglia pyroptosis and the inflammatory response via regulating the p38/NLRP3 pathway.
Journal Article
Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48
2018
Defects in DNA repair can cause various genetic diseases with severe pathological phenotypes. Fanconi anemia (FA) is a rare disease characterized by bone marrow failure, developmental abnormalities, and increased cancer risk that is caused by defective repair of DNA interstrand crosslinks (ICLs). Here, we identify the deubiquitylating enzyme USP48 as synthetic viable for FA-gene deficiencies by performing genome-wide loss-of-function screens across a panel of human haploid isogenic FA-defective cells (FANCA, FANCC, FANCG, FANCI, FANCD2). Thus, as compared to FA-defective cells alone, FA-deficient cells additionally lacking USP48 are less sensitive to genotoxic stress induced by ICL agents and display enhanced, BRCA1-dependent, clearance of DNA damage. Consequently, USP48 inactivation reduces chromosomal instability of FA-defective cells. Our results highlight a role for USP48 in controlling DNA repair and suggest it as a potential target that could be therapeutically exploited for FA.
Fanconi anemia is a rare disease caused by defective DNA interstrand crosslink repair. Here the authors observe that USP48 deficiencies reduce chromosomal instability in FA-defective cells, suggesting it might be a potential therapeutic target.
Journal Article
A minimal Fanconi Anemia complex in early diverging fungi
by
Barua, Drishtee
,
Płecha, Magdalena
,
Muszewska, Anna
in
631/208/182
,
631/326/193/2540
,
631/326/193/2541
2024
Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in S
accharomyces cerevisiae
but, their mechanism of interaction to resolve ICL is still unclear. Unlike
Dikarya
, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across
Opisthokonta
. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to
Dikarya
. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in
Mucoromycota
with a gradual loss of components in
Dikarya
ancestors.
Journal Article
This website uses cookies to ensure you get the best experience on our website.