Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
220,238 result(s) for "FINANCIAL OPTIONS"
Sort by:
The Impact of Dynamic Surrender on Guarantees and Options in Life Insurance
Early termination of an insurance contract (surrender) and sharing of the investment return are the two basic option features of traditional insurance products, such as term insurance and endowment insurance. Managing the process of insurance policies surrenders leads us to research the dynamic of surrender. All the examples use the methods for calculating the technical provisions and the profit set out in Solvency II and the international financial reporting standard IFRS 17, valid since 2023. The paper also presents examples of the valuation of surrender value options in the case of dynamic policyholder behaviour. The Monte Carlo approach through the use of stochastic models places a value on investment sharing and surrenders value options. Using a dynamic policyholder surrender behaviour technique leads to a more significant impact on the profit.
On Numerical Pricing of Put-Call Parities for Asian Options Driven by New Time-Fractional Black-Scholes Evolution Equation
The objective of this paper is twofold. Firstly, to derive time-fractional evolution equation modeling the No-Arbitrage premium of Asian option (with arithmetic and geometric averages ) contingent upon an underlying asset that satisfies the fractional stochastic differential equation, in a setting when the strike price is fixed and floating. Secondly, we have computed the four versions of the put-call parities for Asian options, by solving the time-fractional Black-Scholes evolution modeling the difference of the premiums of put and call Asian options, through Fractional Reduced Differential Transform (FRDT) algorithm. We have also established the convergence and the error estimates for the FRDT Algorithm for the two independent variables.
Efficient Scheme for the Economic Heston–Hull–White Problem Using Novel RBF-FD Coefficients Derived from Multiquadric Function Integrals
This study presents an efficient method using the local radial basis function finite difference scheme (RBF-FD). The innovative coefficients are derived from the integrals of the multiquadric (MQ) function. Theoretical convergence rates for the coefficients used in function derivative approximation are provided. The proposed scheme utilizes RBF-FD estimations on three-point non-uniform stencils to construct the final approximation on a tensor grid for the 3D Heston–Hull–White (HHW) PDE, which is relevant in economics and mathematical finance. Numerical evidence and comparative analyses validate the results and the proposed scheme.
Trading options for edge : profit from options and manage risk like the professional trading firms
\"If you have experience in option trading, or a strong understanding of the options markets, but want to better understand how to trade given certain market conditions, this is the book for you. Many people have some knowledge of trading strategies, but have no idea how to pull it all together. Mark Sebastian's latest book will teach trade evaluation, using Greeks, trading various spreads under different market conditions, portfolio-building, and risk management. Sebastian's approach will help traders understand how to find edge, what kind of trade under what conditions will capture edge, and how to create and successfully hedge to help you build your own personal Goldman Sachs or Merrill Lynch. The book demonstrates how to structure a portfolio of trades that makes more money with less risk\"-- Provided by publisher.
Design Flaws in United Kingdom Renewable Energy Support Scheme
Soon after the UK’s Feed-in Tariff (FiT) Scheme providing incentive prices for renewable energy was introduced in 2010, adjustments and modifications were made to eligibility criteria and incentive prices. Prices paid for renewable energy (RE) under the scheme were cut, deployment caps were introduced, and preliminary accreditation and efficiency standards were imposed. Controversy ensued as supporters sought help for the nascent RE technologies, while detractors claimed that the scheme was a wasteful means of reducing greenhouse gases. In this research, we examine how RE was incentivized under the FiT Scheme and its wider impact upon various stakeholders to assess its compatibility with liberalized electricity markets of the UK. We employ a financial performance metric to measure the direct costs of RE in compensation to investors and financial option theory to analyze the externalities of RE generation. As a means of reducing atmospheric CO2, the FiT Scheme was expensive, and the externalities imposed upon stakeholders were large. Whilst the UK scheme was effective in delivering RE capacity, our findings show that the scheme was flawed because the compensation provided to investors was greater than required while large indirect costs were ignored. Although eventually reducing feed-in tariffs addressed direct costs in compensation to RE investors, the externalities arising from stochastic renewable output under dispatch prioritization remain. Given the magnitude of externalities, large volumes of RE may be incompatible with the current design of electricity markets.
LOCALIZED RADIAL BASIS FUNCTIONS FOR NO-ARBITRAGE PRICING OF OPTIONS UNDER STOCHASTIC ALPHA–BETA–RHO DYNAMICS
Closed-form explicit formulas for implied Black–Scholes volatilities provide a rapid evaluation method for European options under the popular stochastic alpha–beta–rho (SABR) model. However, it is well known that computed prices using the implied volatilities are only accurate for short-term maturities, but, for longer maturities, a more accurate method is required. This work addresses this accuracy problem for long-term maturities by numerically solving the no-arbitrage partial differential equation with an absorbing boundary condition at zero. Localized radial basis functions in a finite-difference mode are employed for the development of a computational method for solving the resulting two-dimensional pricing equation. The proposed method can use either multiquadrics or inverse multiquadrics, which are shown to have comparable performances. Numerical results illustrate the accuracy of the proposed method and, more importantly, that the computed risk-neutral probability densities are nonnegative. These two key properties indicate that the method of solution using localized meshless methods is a viable and efficient means for price computations under SABR dynamics.
On Accelerating Monte Carlo Integration Using Orthogonal Projections
Monte Carlo simulation is an indispensable tool in calculating high-dimensional integrals. Although Monte Carlo integration is notoriously known for its slow convergence, it could be improved by various variance reduction techniques. This paper applies orthogonal projections to study the amount of variance reduction, and also proposes a novel projection estimator that is associated with a group of symmetries of the probability measure. For a given space of functions, the average variance reduction can be derived. For a specific function, its variance reduction is also analyzed. The well-known antithetic estimator is a special case of the projection estimator, and new results of its variance reduction and efficiency are provided. Various illustrations including pricing financial Asian options are provided to confirm our claims.