Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
492 result(s) for "FLC"
Sort by:
The 3′ processing of antisense RNAs physically links to chromatin-based transcriptional control
Noncoding RNA plays essential roles in transcriptional control and chromatin silencing. At Arabidopsis thaliana FLC, antisense transcription quantitatively influences transcriptional output, but the mechanism by which this occurs is still unclear. Proximal polyadenylation of the antisense transcripts by FCA, an RNA-binding protein that physically interacts with RNA 3′ processing factors, reduces FLC transcription. This process genetically requires FLD, a homolog of the H3K4 demethylase LSD1. However, the mechanism linking RNA processing to FLD function had not been established. Here, we show that FLD tightly associates with LUMINIDEPENDENS (LD) and SET DOMAIN GROUP 26 (SDG26) in vivo, and, together, they prevent accumulation of monomethylated H3K4 (H3K4me1) over the FLC gene body. SDG26 interacts with the RNA 3′ processing factor FY (WDR33), thus linking activities for proximal polyadenylation of the antisense transcripts to FLD/LD/SDG26-associated H3K4 demethylation. We propose this demethylation antagonizes an active transcription module, thus reducing H3K36me3 accumulation and increasing H3K27me3. Consistent with this view, we show that Polycomb Repressive Complex 2 (PRC2) silencing is genetically required by FCA to repress FLC. Overall, our work provides insights into RNA-mediated chromatin silencing.
UAV Trajectory Tracking Using Proportional-Integral-Derivative-Type-2 Fuzzy Logic Controller with Genetic Algorithm Parameter Tuning
Unmanned Aerial Vehicle (UAV)-type Quadrotors are highly nonlinear systems that are difficult to control and stabilize outdoors, especially in a windy environment. Many algorithms have been proposed to solve the problem of trajectory tracking using UAVs. However, current control systems face significant hurdles, such as parameter uncertainties, modeling errors, and challenges in windy environments. Sensitivity to parameter variations may lead to performance degradation or instability. Modeling errors arise from simplifications, causing disparities between assumed and actual behavior. Classical controls may lack adaptability to dynamic changes, necessitating adaptive strategies. Limited robustness in handling uncertainties can result in suboptimal performance. Windy environments introduce disturbances, impacting system dynamics and precision. The complexity of wind modeling demands advanced estimation and compensation strategies. Tuning challenges may necessitate frequent adjustments, posing practical limitations. Researchers have explored advanced control paradigms, including robust, adaptive, and predictive control, aiming to enhance system performance amidst uncertainties in a scientifically rigorous manner. Our approach does not require knowledge of UAVs and noise models. Furthermore, the use of the Type-2 controller makes our approach robust in the face of uncertainties. The effectiveness of the proposed approach is clear from the obtained results. In this paper, robust and optimal controllers are proposed, validated, and compared on a quadrotor navigating an outdoor environment. First, a Type-2 Fuzzy Logic Controller (FLC) combined with a PID is compared to a Type-1 FLC and Backstepping controller. Second, a Genetic Algorithm (GA) is proposed to provide the optimal PID-Type-2 FLC tuning. The Backstepping, PID-Type-1 FLC, and PID-Type-2 FLC with GA optimization are validated and evaluated with real scenarios in a windy environment. Deep robustness analysis, including error modeling, parameter uncertainties, and actuator faults, is considered. The obtained results clearly show the robustness of the optimal PID-Type-2 FLC compared to the Backstepping and PID-Type-1 FLC controllers. These results are confirmed by the numerical index of each controller compared to the PID-type-2 FLC, with 12% for the Backstepping controller and 51% for the PID-Type-1 FLC.
Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target
Transcription in eukaryotic genomes generates an extensive array of non-protein-coding RNA, the functional significance of which is mostly unknown. We are investigating the link between non-coding RNA and chromatin regulation through analysis of FLC — a regulator of flowering time in Arabidopsis and a target of several chromatin pathways. Here we use an unbiased strategy to characterize non-coding transcripts of FLC and show that sense/antisense transcript levels correlate in a range of mutants and treatments, but change independently in cold-treated plants. Prolonged cold epigenetically silences FLC in a Polycomb-mediated process called vernalization. Our data indicate that upregulation of long non-coding antisense transcripts covering the entire FLC locus may be part of the cold-sensing mechanism. Induction of these antisense transcripts occurs earlier than, and is independent of, other vernalization markers and coincides with a reduction in sense transcription. We show that addition of the FLC antisense promoter sequences to a reporter gene is sufficient to confer cold-induced silencing of the reporter. Our data indicate that cold-induced FLC antisense transcripts have an early role in the epigenetic silencing of FLC, acting to silence FLC transcription transiently. Recruitment of the Polycomb machinery then confers the epigenetic memory. Antisense transcription events originating from 3′ ends of genes might be a general mechanism to regulate the corresponding sense transcription in a condition/stage-dependent manner.
Efficacy of an orally administered classical swine fever live marker vaccine (Flc-LOM-BErns strain) in pigs
•The Flc-LOM-BErns vaccine has DIVA function as it induces differential antibodies specific for CSF Erns and BVDV Erns proteins.•The minimum dose of oral Flc-LOM-BErns vaccine capable of inducing protective immunity should be 105.0 TCID50/dose or higher.•A Flc-LOM-BErns intramuscular vaccine should be inoculated at a dose of at least 103.0 TCID50 to ensure complete protection. In several countries, classical swine fever (CSF) has not been detected in domestic pigs, but has been detected in wild boars, making the disease difficult to control. To overcome this problem, we inoculated pigs with a CSF live marker vaccine (Flc-LOM-BErns strain), which has “distinguish infection from vaccinated animals (DIVA)” function, to determine whether it is suitable as an oral vaccine specifically for wild boars. Pigs inoculated intramuscularly or orally with the Flc-LOM-BErns vaccine were challenged 2 or 4 weeks later, respectively, with virulent CSFV. Pigs administered the oral Flc-LOM-BErns strain (105.0 and 6.0 TCID50/dose), and those vaccinated intramuscularly (103.0 TCID50/dose), had normal numbers of leukocytes and normal body temperature. Also, they generated protective neutralizing antibodies and anti-BVDV Erns antibodies. In addition, all pigs in these groups survived, with no CSFV RNA detected in feces, spleen, or other organs. Thus, the Flc-LOM-BErns vaccine shows excellent safety and efficacy, while having DIVA function and suitability for oral inoculation.
Arabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity
Flowering Locus C (FLC), a floral repressor, plays an important role in flowering. The mechanisms regulating FLC gene expression and protein function have been studied extensively; however, post-translational regulation of FLC remains unclear. Here, we identified Arabidopsis HIGH PLOIDY2 (HPY2) as an E3 SUMO ligase for FLC. In vitro and vivo pull-down assays showed that FLC physically interacts with HPY2. In vitro assays showed that the stimulation of FLC sumoylation by HPY2 was dependent on SUMO-activating enzyme E1 and -conjugating enzyme E2, indicating that HPY2 was an E3 SUMO ligase for FLC. In transgenic plants, inducible HPY2 overexpression increased the concentration of FLC, indicating that HPY2 stabilized FLC through direct sumoylation. Flowering time in hpy2-2 mutants was shorter than in wild-type plants under long- and short-day conditions, with a greater effect under short-day conditions, and FLC was downregulated in hpy2-2 mutants. These data indicate that HPY2 regulates FLC function and stability at both the transcriptional and post-translational levels through its E3 SUMO ligase activity.
Effects of environmental variation during seed production on seed dormancy and germination
The environment during seed production has major impacts on the behaviour of progeny seeds. It can be shown that for annual plants temperature perception over the whole life history of the mother can affect the germination rate of progeny, and instances have been documented where these affects cross whole generations. Here we discuss the current state of knowledge of signal transduction pathways controlling environmental responses during seed production, focusing both on events that take place in the mother plant and those that occur directly as a result of environmental responses in the developing zygote. We show that seed production environment effects are complex, involving overlapping gene networks active independently in fruit, seed coat, and zygotic tissues that can be deconstructed using careful physiology alongside molecular and genetic experiments.
Comparison of Solar P O and FLC-based MPPT Controllers Analysis under Dynamic Conditions
Increase in electricity generation is caused due to population increase, which leads to the depletion of fossil fuels, and increased pollution. This leads to focusing on alternate renewable energy, mainly solar photovoltaic generation, due to the abundant availability. The maximum power generated by a PV module depends on the temperature and irradiance because the P-V and V-I natures are non-linear. Various DC-DC boost converters are used along with the MPPT techniques because the conversion efficiency of the PV system is low [1][2]. In this paper, comparative analysis between Perturb and Observe (P&O) and Fuzzy Logic-based Maximum Power Point Tracking (MPPT) systems along with modified SEPIC are done using MATLAB/ SIMULINK software. Simulations are done at different irradiations to observe its tracking speed towards MPP. From the obtained output (simulation), it is observed that the Fuzzy Logic Converter (FLC)-based MPPT controllers have good dynamic performance, reduced oscillation, high tracking speed, maximum power, etc...[3].
Co-transcriptional gene regulation in plants
The essence of life lies in the precise regulation of genetic information flow, namely, the central dogma, with gene transcription playing a pivotal role as the starting point. For a living cell, it is not only essential via transcription to synthesize the RNA but also to ensure its timely processing, packaging, and sorting, thereby determining its distinct fate, such as nuclear retention, export, translation, or degradation. Initially observed in yeast and animals, and more recently in plants, a large amount of evidence indicates that RNA processing and protein–RNA packaging occur largely concomitantly with transcription, a phenomenon known as co-transcriptional gene regulation. Increasing evidence suggests that this mechanism provides extensive regulatory potential for gene expression. It not only ensures timely RNA processing, thus determining the fate of RNA, but may also influence the transcription dynamics of RNA polymerase II (Pol II) and the chromatin environment. In this review, we highlight recent advances in understanding co-transcriptional gene regulation in the model plant Arabidopsis thaliana, focusing on Pol II dynamics post-initiation and their interplay with RNA-processing events such as capping, splicing, 3′ end processing, protein–RNA interactions, and RNA fate determination. By comparing these findings with progress in other model systems, we discuss the unique characteristics of co-transcriptional gene regulation in plants and its potential biological significance. Additionally, we introduce recent key discoveries at the FLOWERING LOCUS C (FLC) gene under warm conditions, which exemplify how co-transcriptional RNA processing influences the chromatin environment and leads to long-term regulatory impacts. Finally, we provide perspectives on yet-unanswered key questions related to co-transcriptional gene regulation in plants.
Optimal Management of a Grid-Connected Hybrid Energy System Using FLC-ANN Hybrid Technique
In this work, a grid-connected hybrid energy system composed of wind/PV/FC/DG with a HESS based on a battery and supercapacitor. To protect the latter from deep discharge and enhance network flexibility, we use a diesel generator. The objectives of this research are: For generator-side control systems, we apply the TSR strategy for the wind power generator and the FLC strategy for the photovoltaic generator to achieve maximum energy operation. On the management side, we proposed and implemented a new hybrid intelligent energy management strategy based on the FLC-ANN to balance energy supply and demand and increase the life cycle of the proposed system. As for the grid side, the DPC-FLC was applied to control the flow of active and reactive power flowing in the grid. To evaluate the effectiveness of the proposed controllers under changing conditions in energy demand and climate, a simulation test of the proposed system was conducted using the Matlab-Simulink platform. Finally, the results obtained demonstrated the efficiency of the proposed system in terms of the feasibility and effectiveness of the proposed control techniques, in addition to the THD of the network current, which reached 0.34%, which contributes to improving the power quality of hybrid systems.