Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
53 result(s) for "FOXN1"
Sort by:
Inborn errors of thymic stromal cell development and function
As the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.
Thymus Functionality Needs More Than a Few TECs
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3 rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Hypoxia and Foxn1 alter the proteomic signature of dermal fibroblasts to redirect scarless wound healing to scar-forming skin wound healing in Foxn1−/− mice
Background Foxn1 −/− deficient mice are a rare model of regenerative skin wound healing among mammals. In wounded skin, the transcription factor Foxn1 interacting with hypoxia-regulated factors affects re-epithelialization, epithelial-mesenchymal transition (EMT) and dermal white adipose tissue (dWAT) reestablishment and is thus a factor regulating scar-forming/reparative healing. Here, we hypothesized that transcriptional crosstalk between Foxn1 and Hif-1α controls the switch from scarless (regenerative) to scar-present (reparative) skin wound healing. To verify this hypothesis, we examined (i) the effect of hypoxia/normoxia and Foxn1 signalling on the proteomic signature of Foxn1 −/− (regenerative) dermal fibroblasts (DFs) and then (ii) explored the effect of Hif-1α or Foxn1/Hif-1α introduced by a lentiviral (LV) delivery vector to injured skin of regenerative Foxn1 −/− mice with particular attention to the remodelling phase of healing. Results We showed that hypoxic conditions and Foxn1 stimulation modified the proteome of Foxn1 −/− DFs. Hypoxic conditions upregulated DF protein profiles, particularly those related to extracellular matrix (ECM) composition: plasminogen activator inhibitor-1 (Pai-1), Sdc4, Plod2, Plod1, Lox, Loxl2, Itga2, Vldlr, Ftl1, Vegfa, Hmox1, Fth1, and F3. We found that Pai-1 was stimulated by hypoxic conditions in regenerative Foxn1 −/− DFs but was released by DFs to the culture media exclusively upon hypoxia and Foxn1 stimulation. We also found higher levels of Pai-1 protein in DFs isolated from Foxn1 +/+ mice (reparative/scar-forming) than in DFs isolated from Foxn1 −/− (regenerative/scarless) mice and triggered by injury increase in Foxn1 and Pai-1 protein in the skin of mice with active Foxn1 (Foxn1 +/+ mice). Then, we demonstrated that the introduction of Foxn1 and Hif-1α via lentiviral injection into the wounded skin of regenerative Foxn1 −/− mice activates reparative/scar-forming healing by increasing the wounded skin area and decreasing hyaluronic acid deposition and the collagen type III to I ratio. We also identified a stimulatory effect of LV-Foxn1 + LV-Hif-1α injection in the wounded skin of Foxn1 −/− mice on Pai-1 protein levels. Conclusions The present data highlight the effect of hypoxia and Foxn1 on the protein profile and functionality of regenerative Foxn1 −/− DFs and demonstrate that the introduction of Foxn1 and Hif-1α into the wounded skin of regenerative Foxn1 −/− mice activates reparative/scar-forming healing.
Expanding the Nude SCID/CID Phenotype Associated with FOXN1 Homozygous, Compound Heterozygous, or Heterozygous Mutations
Human nude SCID is a rare autosomal recessive inborn error of immunity (IEI) characterized by congenital athymia, alopecia, and nail dystrophy. Few cases have been reported to date. However, the recent introduction of newborn screening for IEIs and high-throughput sequencing has led to the identification of novel and atypical cases. Moreover, immunological alterations have been recently described in patients carrying heterozygous mutations. The aim of this paper is to describe the extended phenotype associated with FOXN1 homozygous, compound heterozygous, or heterozygous mutations. We collected clinical and laboratory information of a cohort of 11 homozygous, 2 compound heterozygous, and 5 heterozygous patients with recurrent severe infections. All, except one heterozygous patient, had signs of CID or SCID. Nail dystrophy and alopecia, that represent the hallmarks of the syndrome, were not always present, while almost 50% of the patients developed Omenn syndrome. One patient with hypomorphic compound heterozygous mutations had a late-onset atypical phenotype. A SCID-like phenotype was observed in 4 heterozygous patients coming from the same family. A spectrum of clinical manifestations may be associated with different mutations. The severity of the clinical phenotype likely depends on the amount of residual activity of the gene product, as previously observed for other SCID-related genes. The severity of the manifestations in this heterozygous family may suggest a mechanism of negative dominance of the specific mutation or the presence of additional mutations in noncoding regions.
Efficient generation of thymic epithelium from induced pluripotent stem cells that prolongs allograft survival
The thymus plays a significant role in establishing immunological self-tolerance. Previous studies have revealed that host immune reaction to allogeneic transplants could be regulated by thymus transplantation. However, physiological thymus involution hinders the clinical application of these insights. Here, we report an efficient generation of thymic epithelial-like tissue derived from induced pluripotent stem cells (iPSCs) and its potential to regulate immune reaction in allogeneic transplantation. We established an iPSC line which constitutively expresses mouse Foxn1 gene and examined the effect of its expression during in vitro differentiation of thymic epithelial cells (TECs). We found that Foxn1 expression enhances the differentiation induction of cells expressing TEC-related cell surface molecules along with upregulation of endogenous Foxn1 . iPSC-derived TECs (iPSC-TECs) generated T cells in nude recipient mice after renal subcapsular transplantation. Moreover, iPSC-TEC transplantation to immuno-competent recipients significantly prolonged the survival of allogeneic skin. Our study provides a novel concept for allogeneic transplantation in the setting of regenerative medicine.
T-Cell Immunodeficiencies With Congenital Alterations of Thymic Development: Genes Implicated and Differential Immunological and Clinical Features
Combined Immunodeficiencies (CID) are rare congenital disorders characterized by defective T-cell development that may be associated with B- and NK-cell deficiency. They are usually due to alterations in genes expressed in hematopoietic precursors but in few cases, they are caused by impaired thymic development. Athymia was classically associated with DiGeorge Syndrome due to gene haploinsufficiency. Other genes, implicated in thymic organogenesis include , associated with Nude SCID syndrome, , associated with Otofaciocervical Syndrome type 2, and , one of the genes implicated in CHARGE syndrome. More recently, chromosome 2p11.2 microdeletion, causing haploinsufficiency, has been identified in 5 families with impaired thymus development. In this review, we will summarize the main genetic, clinical, and immunological features related to the abovementioned gene mutations. We will also focus on different therapeutic approaches to treat SCID in these patients.
Dermal White Adipose Tissue (dWAT) Is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing
Dermal white adipose tissue (dWAT) is involved in the maintenance of skin homeostasis. However, the studies concerning its molecular regulation are limited. In the present paper, we ask whether the introduction of two transcription factors, Foxn1 and Hif-1α, into the post-wounded skin of Foxn1−/− mice regulates dWAT during wound healing (days 3 and 6). We have chosen lentivirus vectors (LVs) as a tool to deliver Foxn1 and Hif-1α into the post-wounded skin. We documented that combinations of both transgenes reduces the number, size and diameter of dermal adipocytes at the wound bed area. The qRT-PCR analysis of pro-adipogenic genes, revealed that LV-Hif-1α alone, or combined with LV-Foxn1, increases the mRNA expression of Pparγ, Glut 4 and Fasn at post-wounding day 6. However, the most spectacular stimulatory effect of Foxn1 and/or Hif-1α was observed for Igf2, the growth factor participating in adipogenic signal transduction. Our data also shows that Foxn1/Hif-1α, at post-wounding day 3, reduces levels of CD68 and MIP-1γ mRNA expression and the percentage of CD68 positive cells in the wound site. In conclusion, the present data are the first to document that Foxn1 and Hif-1α cooperatively (1) regulate dWAT during the proliferative phase of skin wound healing through the Igf2 signaling pathway, and (2) reduce the macrophages content in the wound site.
Lin28 regulates thymic growth and involution and correlates with MHCII expression in thymic epithelial cells
Thymic epithelial cells (TECs) are essential for T cell development in the thymus, yet the mechanisms governing their differentiation are not well understood. Lin28, known for its roles in embryonic development, stem cell pluripotency, and regulating cell proliferation and differentiation, is expressed in endodermal epithelial cells during embryogenesis and persists in adult epithelia, implying postnatal functions. However, the detailed expression and function of Lin28 in TECs remain unknown. In this study, we examined the expression patterns of Lin28 and its target Let-7g in fetal and postnatal TECs and discovered opposing expression patterns during postnatal thymic growth, which correlated with FOXN1 and MHCII expression. Specifically, Lin28b showed high expression in MHCII hi TECs, whereas Let-7g was expressed in MHCII lo TECs. Deletion of Lin28a and Lin28b specifically in TECs resulted in reduced MHCII expression and overall TEC numbers. Conversely, overexpression of Lin28a increased total TEC and thymocyte numbers by promoting the proliferation of MHCII lo TECs. Additionally, our data strongly suggest that Lin28 and Let-7g expression is reliant on FOXN1 to some extent. These findings suggest a critical role for Lin28 in regulating the development and differentiation of TECs by modulating MHCII expression and TEC proliferation throughout thymic ontogeny and involution. Our study provides insights into the mechanisms underlying TEC differentiation and highlights the significance of Lin28 in orchestrating these processes.