Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "FRDTM"
Sort by:
Dynamical Analysis of Time Fractional Radial Groundwater Flow Equation
In this study, a time-fractional extension of the classical Theis problem with an exponential source term is investigated in a confined aquifer. The governing equation is modeled using two different fractional derivatives—the Caputo and Atangana–Baleanu–Caputo (ABC) operators—to account for memory effects in groundwater flow. The Fractional Reduced Differential Transform Method (FRDTM) is applied to obtain approximate series solutions up to the fifth order. The impact of the fractional order α, the nature of the fractional kernel and the localized source term on the hydraulic head are explored at different radial positions. The comparative analysis between the Caputo and Atangana–Baleanu–Caputo (ABC) models reveals how memory effects and operator choice significantly influence the hydraulic head response, offering insights into selecting suitable models for aquifers with varying recharge characteristics.
Solving fuzzy (1+n)-dimensional Burgers’ equation
In this paper, we study the comparison of fuzzy differential transform method (FDTM), fuzzy Adomian decomposition method (FADM), fuzzy homotopy perturbation method (FHPM), and fuzzy reduced differential transform method (FRDTM) to obtain the solutions of fuzzy (1+n)-dimensional Burgers’ equation under gH-differentiability. We have investigated many new results to solve the above problem, and the methods have been implemented. The four illustrative numerical examples are presented to demonstrate the effectiveness of the proposed methods and also to demonstrate the efficiency and simplicity of the ways they were developed and derived. The results also show that the methods are powerful mathematical tools for solving fuzzy (1+n)-dimensional Burgers’ equation.
Solution of Two-Dimensional Solute Transport Model for Heterogeneous Porous Medium Using Fractional Reduced Differential Transform Method
This study contains a two-dimensional mathematical model of solute transport in a river with temporally and spatially dependent flow, explicitly focusing on pulse-type input point sources with a fractional approach. This model is analyzed by assuming an initial concentration function as a declining exponential function in both the longitudinal and transverse directions. The governing equation is a time-fractional two-dimensional advection–dispersion equation with a variable form of dispersion coefficients, velocities, decay constant of the first order, production rate coefficient for the solute at the zero-order level, and retardation factor. The solution of the present problem is obtained by the fractional reduced differential transform method (FRDTM). The analysis of the initial retardation factor has been carried out via plots. Also, the influence of initial longitudinal and transverse dispersion coefficients and velocities has been examined by graphical analysis. The impact of fractional parameters on pollution levels is also analyzed numerically and graphically. The study of convergence for the FRDTM technique has been conducted to assess its efficacy and accuracy.
On the Solution of an Imprecisely Defined Nonlinear Time-Fractional Dynamical Model of Marriage
The present paper investigates the numerical solution of an imprecisely defined nonlinear coupled time-fractional dynamical model of marriage (FDMM). Uncertainties are assumed to exist in the dynamical system parameters, as well as in the initial conditions that are formulated by triangular normalized fuzzy sets. The corresponding fractional dynamical system has first been converted to an interval-based fuzzy nonlinear coupled system with the help of a single-parametric gamma-cut form. Further, the double-parametric form (DPF) of fuzzy numbers has been used to handle the uncertainty. The fractional reduced differential transform method (FRDTM) has been applied to this transformed DPF system for obtaining the approximate solution of the FDMM. Validation of this method was ensured by comparing it with other methods taking the gamma-cut as being equal to one.