Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,730
result(s) for
"Fabaceae - genetics"
Sort by:
Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers
by
Naeimeh, Enayatizamir
,
Mehdi Khanlou Khosro
,
Bakhtiyarifar Marzieh
in
Acetic acid
,
Acid production
,
Bacillus endophyticus
2021
This study was performed to isolate non-rhizobial endophytic bacteria from the root nodules of Glycine max (soybean), Vigna radiata (mung bean) and Vigna unguiculata (cowpea). The bacteria were characterized for plant growth promoting properties such as indole acetic acid production, phosphate and zinc solubilisation, nitrogen fixation and hydrogen cyanide production. Phylogenetic identification was performed using the Neighbour-Joining method on16S rRNA gene sequences. The impact of salt tolerant isolates on some properties of wheat cv. Chamran was evaluated by a completely randomised factorial design. Nine isolates having some characteristics related to plant growth promotion were identified as Staphylococcus hominis 7E, Streptomyces sp. 11E, Bacillus sp. 13E, Acinetobacter sp. 19E, from mung bean, Bacillus endophyticus 1E from cowpea, Staphylococcus hominis 9E, Bacillus endophyticus 14E, Brevundimonas sp. 16E and Kocuria sp. 26E from soybean nodules. Isolates 7E and 19E caused maximum growth inhibition of Fusarium on PDA plate. All isolates were able to grow at salinity levels of mixtures containing up to 400 mM of NaCl, CaCl2 and MgCl2, but their growth was inhibited by increasing salinity level. Only the growth of isolate 14E increased at three levels of salinity compared with control. Some isolates, i.e. 7E, 14E, 19E and 26E had higher colony diameter at 45 °C after 48 h of incubation compared to the growth at 30 and 40 °C. Inoculation of soil with isolate 1E and isolate 26E caused to ameliorate salinity stress in wheat and increased the weight of 1000-grains as compared with non-inoculated treatments.
Journal Article
Does the Phytochemical Diversity of Wild Plants Like the Erythrophleum genus Correlate with Geographical Origin?
by
Delporte, Cédric
,
Souard, Florence
,
Van Antwerpen, Pierre
in
Africa
,
Alcohol
,
Analytical Chemistry
2021
Secondary metabolites are essential for plant survival and reproduction. Wild undomesticated and tropical plants are expected to harbor highly diverse metabolomes. We investigated the metabolomic diversity of two morphologically similar trees of tropical Africa, Erythrophleum suaveolens and E. ivorense, known for particular secondary metabolites named the cassaine-type diterpenoids. To assess how the metabolome varies between and within species, we sampled leaves from individuals of different geographic origins but grown from seeds in a common garden in Cameroon. Metabolites were analyzed using reversed phase LC-HRMS(/MS). Data were interpreted by untargeted metabolomics and molecular networks based on MS/MS data. Multivariate analyses enabled us to cluster samples based on species but also on geographic origins. We identified the structures of 28 cassaine-type diterpenoids among which 19 were new, 10 were largely specific to E. ivorense and five to E. suaveolens. Our results showed that the metabolome allows an unequivocal distinction of morphologically-close species, suggesting the potential of metabolite fingerprinting for these species. Plant geographic origin had a significant influence on relative concentrations of metabolites with variations up to eight (suaveolens) and 30 times (ivorense) between origins of the same species. This shows that the metabolome is strongly influenced by the geographical origin of plants (i.e., genetic factors).
Journal Article
A reference genome for pea provides insight into legume genome evolution
by
Lichtenzveig, Judith
,
Klein, Anthony
,
Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)) ; Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
in
631/208/212
,
631/208/2491
,
631/208/514
2019
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel’s original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.
Journal Article
Exploration of Plastid Phylogenomic Conflict Yields New Insights into the Deep Relationships of Leguminosae
by
Wang, Jian
,
Li, De-Zhu
,
Zhang, Shu-Dong
in
Fabaceae - classification
,
Fabaceae - genetics
,
Genome, Plastid - genetics
2020
Phylogenomic analyses have helped resolve many recalcitrant relationships in the angiosperm tree of life, yet phylogenetic resolution of the backbone of the Leguminosae, one of the largest and most economically and ecologically important families, remains poor due to generally limited molecular data and incomplete taxon sampling of previous studies. Here, we resolve many of the Leguminosae’s thorniest nodes through comprehensive analysis of plastome-scale data using multiple modified coding and noncoding data sets of 187 species representing almost all major clades of the family. Additionally,we thoroughly characterize conflicting phylogenomic signal across the plastome in light of the family’s complex history of plastome evolution. Most analyses produced largely congruent topologies with strong statistical support and provided strong support for resolution of some long-controversial deep relationships among the early diverging lineages of the subfamilies Caesalpinioideae and Papilionoideae. The robust phylogenetic backbone reconstructed in this study establishes a framework for future studies on legume classification, evolution, and diversification. However, conflicting phylogenetic signal was detected and quantified at several key nodes that prevent the confident resolution of these nodes using plastome data alone.
Journal Article
Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation
by
Roy, Sonali
,
Nandety, Raja Sekhar
,
Pislariu, Catalina I.
in
Bacteria
,
Cell Division
,
Fabaceae - genetics
2020
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Journal Article
Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis
by
Xu, Shanyun
,
Pujic, Petar
,
Fu, Yuan
in
Agricultural economics
,
Agricultural ecosystems
,
Agrochemicals
2018
Genomic traces of symbiosis loss A symbiosis between certain bacteria and their plant hosts delivers fixed nitrogen to the plants. Griesmann et al. sequenced several plant genomes to analyze why nitrogen-fixing symbiosis is irregularly scattered through the evolutionary tree (see the Perspective by Nagy). Various genomes carried traces of lost pathways that could have supported nitrogen-fixing symbiosis. It seems that this symbiosis, which relies on multiple pathways and complex interorganismal signaling, is susceptible to selection and prone to being lost over evolutionary time. Science , this issue p. eaat1743 ; see also p. 125
Journal Article
Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication
2020
Adaptive changes in plant phenology are often considered to be a feature of the so-called ‘domestication syndrome’ that distinguishes modern crops from their wild progenitors, but little detailed evidence supports this idea. In soybean, a major legume crop, flowering time variation is well characterized within domesticated germplasm and is critical for modern production, but its importance during domestication is unclear. Here, we identify sequential contributions of two homeologous pseudo-response-regulator genes,
Tof12
and
Tof11
, to ancient flowering time adaptation, and demonstrate that they act via
LHY
homologs to promote expression of the legume-specific
E1
gene and delay flowering under long photoperiods. We show that
Tof12
-dependent acceleration of maturity accompanied a reduction in dormancy and seed dispersal during soybean domestication, possibly predisposing the incipient crop to latitudinal expansion. Better understanding of this early phase of crop evolution will help to identify functional variation lost during domestication and exploit its potential for future crop improvement.
Whole-genome resequencing and association analyses in 424 soybean accessions identify two homeologous genes that contributed to flowering time adaptation during soybean domestication.
Journal Article
Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium–legume symbiosis
2021
Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several
Aeschynomene
spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in
Aeschynomene evenia
, supported by the development of a genome sequence for
A. evenia
and transcriptomic resources for 10 additional
Aeschynomene
spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the
A. evenia
model and provides a cornerstone to unravel mechanisms underlying the rhizobium–legume symbiosis.
The establishment of symbiotic interaction between
Aeschynomene evenia
and photosynthetic bradyrhizobia doesn’t involve the canonical Nod factors and infection threads. Here, the authors assemble the draft genome of
A. evenia
and identify a receptor-like kinase in mediating the symbiotic interaction.
Journal Article
Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans
by
Valliyodan, Babu
,
Murphy, MacKensie
,
Song, Li
in
Adaptation, Physiological - genetics
,
Chromosome Mapping
,
Crops, Agricultural - genetics
2017
Drought and its interaction with high temperature are the major abiotic stress factors affecting soybean yield and production stability. Ongoing climate changes are anticipated to intensify drought events, which will further impact crop production and food security. However, excessive water also limits soybean production. The success of soybean breeding programmes for crop improvement is dependent on the extent of genetic variation present in the germplasm base. Screening for natural genetic variation in drought– and flooding tolerance-related traits, including root system architecture, water and nitrogen-fixation efficiency, and yield performance indices, has helped to identify the best resources for genetic studies in soybean. Genomic resources, including whole-genome sequences of diverse germplasms, millions of single-nucleotide polymorphisms, and high-throughput marker genotyping platforms, have expedited gene and marker discovery for translational genomics in soybean. This review highlights the current knowledge of the genetic diversity and quantitative trait loci associated with root system architecture, canopy wilting, nitrogen-fixation ability, and flooding tolerance that contributes to the understanding of drought– and flooding-tolerance mechanisms in soybean. Next-generation mapping approaches and high-throughput phenotyping will facilitate a better understanding of phenotype–genotype associations and help to formulate genomic-assisted breeding strategies, including genomic selection, in soybean for tolerance to drought and flooding stress.
Journal Article
Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies
by
Ojeda, Dario I.
,
Bruneau, Anne
,
Koenen, Erik J. M.
in
Base Sequence
,
Bayes Theorem
,
Bayesian analysis
2020
Phylogenomics is increasingly used to infer deep‐branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep‐branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome‐scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear‐encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as ‘basal’ or ‘early‐diverging’ with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.
Journal Article