Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,639 result(s) for "Fabry-Perot interferometers"
Sort by:
Characterization study of Optical Fiber Refractive Index Sensor Based on Fabry-Perot Interferometer
In this work, an optical fiber refractive index sensor based on the Fabry-Perot interferometer technique is submitted. Single-mode fibers with different diameters (125, 60, and 50) μm were used. The chemical etching technique is used to reduce the fiber diameters. The sensor heads were immersed into liquids of different refractive indices. Two types of liquids were tested, salty and sugary liquids with different refractive indices. From the obtained results all the sensors have a high linearity and good wavelength and intensity sensitivity. For all tested sensors, the wavelength sensitivity was higher for sensors immersed in salty liquids. The sensitivity is 34338 pm/RIU for sensors with a diameter of 50 μm. The response of changing the intensity is also observed the higher intensity sensitivity is 1116.859 μW/RIU for sensors with a diameter of 125 μm immersed into sugary liquids.
The status of DECIGO
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present..
An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials
Mirror-on-mirror nanoplasmonic metamaterials, formed on the basis of voltage-controlled reversible self-assembly of sub-wavelength-sized metallic nanoparticles (NPs) on thin metallic film electrodes, are promising candidates for novel electro-tunable optical devices. Here, we present a new design of electro-tunable Fabry–Perot interferometers (FPIs) in which two parallel mirrors – each composed of a monolayer of NPs self-assembled on a thin metallic electrode – form an optical cavity, which is filled with an aqueous solution. The reflectivity of the cavity mirrors can be electrically adjusted, simultaneously or separately, via a small variation of the electrode potentials, which would alter the inter-NP separation in the monolayers. To investigate optical transmittance from the proposed FPI device, we develop a nine-layer-stack theoretical model, based on our effective medium theory and multi-layer Fresnel reflection scheme, which produces excellent match when verified against full-wave simulations. We show that strong plasmonic coupling among silver NPs forming a monolayer on a thin silver-film substrate makes reflectivity of each cavity mirror highly sensitive to the inter-NP separation. Such a design allows the continuous tuning of the multiple narrow and intense transmission peaks emerging from an FPI cavity via electro-tuning the inter-NP separation in situ – reaping the benefits from both inexpensive bottom-up fabrication and energy-efficient tuning.
Thermospheric wind variations observed by a Fabry–Perot interferometer at Tromsø, Norway, at substorm onsets
Energy input from the magnetosphere during substorms can strongly affect the high-latitude thermosphere. The ionospheric current caused by thermospheric wind variations may also provide a feedback to the magnetosphere. In this study, we investigate the characteristics of high-latitude thermospheric wind variations at local substorm onsets at Tromsø, Norway, as well as the possibility of such feedback mechanism. A Fabry–Perot interferometer (FPI) at Tromsø provided wind measurements estimated from the Doppler shift of red-line emission (630.0 nm) of aurora and airglow. We analyzed wind data in 2009 with a time resolution of ~ 13 min. We first carefully identified the onset times of isolated local substorms at Tromsø and extracted four wind measurements from red-line emission. All these events showed increases of eastward components at local substorm onsets. For northward components, these events showed decreases except for those at midnight. The observed wind variations at local substorm onsets were less than 49 m/s. These values are much smaller than the typical plasma convection speed in the auroral zone. We speculate that the ionospheric current caused by thermospheric wind variations at local substorm onsets does not provide strong feedback to the development of substorm expansion phase in the magnetotail. We discuss the possible causes of these wind variations in the context of plasma convection, diurnal tides, and arc-associated electric field.
Sideband-suppressed narrow bandpass fibre Fabry-Pérot filter composed of fibre Bragg grating and dielectric mirror
To suppress the undesirable sideband transmission occurring in the conventional fibre Bragg grating based Fabry-Pérot filter, a fibre Fabry-Pérot interferometer that is composed of a single fibre Bragg grating and a broadband high-reflectance dielectric mirror coated on a fibre end surface is considered and its very narrow transmission bandwidth of 8.8 pm and high sideband suppression ratio of more than 20 is experimentally demonstrated in good conformity with the numerical simulation.
A Refractive Index Sensor Based on a Fabry–Perot Interferometer Manufactured by NIR Laser Microdrilling and Electric Arc Fusion
In-line Fabry–Perot cavities manufactured by a new technique using electric arc fusion of NIR laser microdrilled optical fiber flat tips were studied herein for refractive index sensing. Sensors were produced by creating an initial hole on the tip of a standard single-mode telecommunication optical fiber using a Q-switched Nd:YAG laser. Laser ablation and plasma formation processes created 5 to 10 micron cavities. Then, a standard splicing machine was used to fuse the microdrilled fiber with another one, thus creating cavities with lengths around 100 micrometers. This length has been proven to be necessary to obtain an interferometric signal with good fringe visibility when illuminating it in the C-band. Then, the sensing tip of the fiber, with the resulting air cavity, was submitted to several cleaves to enhance the signal and, therefore, its response as a sensor, with final lengths between tens of centimeters for the longest and hundreds of microns for the shortest. The experimental results were analyzed via two signal analysis techniques, fringe visibility and fast Fourier transform, for comparison purposes. In absolute values, the obtained sensitivities varied between 0.31 nm−1/RIU and about 8 nm−1/RIU using the latter method and between about 34 dB/RIU and 54 dB/RIU when analyzing the fringe visibility.
A Rotary Platform Mounted Doppler Lidar for Wind Measurements in Upper Troposphere and Stratosphere
A Doppler lidar mounted on a rotary platform has been developed for measuring wind fields in the upper troposphere and stratosphere. The rotating platform was used to support a large system for the detection of wind velocities of sight (VOS) in four directions. The principle, structure, and parameters of the lidar system are introduced. The Fabry-Perot interferometer (FPI), the core component of the wind measurement system, was designed after comprehensively considering the measurement uncertainty and the influence of Mie scattering. Its dual-edge channel bandwidth is 1.05 GHz with 3.48 GHz spacing. In operation, the FPI channels are locked to the laser frequency with a stability of 14.8 MHz. Compared with the local radiosonde, it was found that the deviation in wind speed below 28 km was generally less than 10 m/s, and the deviation in wind direction below 19 km was less than 10 degrees. The 42-day profile comparison between lidar in Hefei and radiosondes in Anqing and Fuyang was analyzed. The statistical results show that the wind speed and wind direction deviations between lidar and radiosondes below 20 km were approximately 10 m/s and 20 degrees, respectively, which are comparable to the regional differences in the wind field. However, as altitudes exceed 20 km, the deviations increased rapidly with height. The experiments indicate that the Doppler lidar could measure wind fields from 7 km to 30 km, with better detection accuracy below 20 km.
Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli
PurposeTo determine if a new photoacoustic imaging (PAI) system successfully depicts (1) peripheral arteries and (2) microvascular circulatory changes in response to thermal stimuli.MethodsFollowing ethical permission, 8 consenting subjects underwent PAI of the dorsalis pedis (DP) artery, and 13 completed PAI of the index fingertip. Finger images were obtained after immersion in warm (30-35 °C) or cold (10-15 °C) water to promote vasodilation or vasoconstriction. The PAI instrument used a Fabry-Perot interferometeric ultrasound sensor and a 30-Hz 750-nm pulsed excitation laser. Volumetric images were acquired through a 14 × 14 × 14-mm volume over 90 s. Images were evaluated subjectively and quantitatively to determine if PAI could depict cold-induced vasoconstriction. The full width at half maximum (FWHM) of resolvable vessels was measured.ResultsFingertip vessels were visible in all participants, with mean FWHM of 125 μm. Two radiologists used PAI to correctly identify vasoconstricted fingertip capillary beds with 100% accuracy (95% CI 77.2-100.0%, p < 0.001). The number of voxels exhibiting vascular signal was significantly smaller after cold water immersion (cold: 5263 voxels; warm: 363,470 voxels, p < 0.001). The DP artery was visible in 7/8 participants (87.5%).ConclusionPAI achieves rapid, volumetric, high-resolution imaging of peripheral limb vessels and the microvasculature and is responsive to vasomotor changes induced by thermal stimuli.Key points• Fabry-Perot interferometer-based photoacoustic imaging (PAI) generates volumetric, high-resolution images of the peripheral vasculature.• The system reliably detects thermally induced peripheral vasoconstriction (100% correct identification rate, p < 0.001).• Vessels measuring less than 100 μm in diameter can be depicted in vivo.
The Design of the CCAT-prime Epoch of Reionization Spectrometer Instrument
The epoch of reionization spectrometer (EoR-Spec) is an instrument module for the Prime-Cam receiver of the 6-m aperture CCAT-prime Telescope at 5600 m in Chile. EoR-Spec will perform 158 μ m [CII] line intensity mapping of star-forming regions at redshifts between 3.5 and 8 (420–210 GHz), tracing the evolution of structure during early galaxy formation. At lower redshifts, EoR-Spec will observe galaxies near the period of peak star formation—when most stars in today’s universe were formed. At higher redshifts, EoR-Spec will trace the late stages of reionization, the early stages of galaxy assembly, and the formation of large-scale, three-dimensional clustering of star-forming galaxies. To achieve its science goals, EoR-Spec will utilize CCAT-prime’s exceptionally low water vapor site, large field of view ( ∼ 5 ∘ at 210 GHz), and narrow beam widths ( ∼ 1 arcminute at 210 GHz). EoR-Spec will be outfitted with a cryogenic, metamaterial, silicon substrate-based Fabry–Perot interferometer operating at a resolving power ( λ / Δ λ ) of 100. Monolithic dichroic arrays of cryogenic, feedhorn-coupled transition edge sensor bolometers provide approximately 6000 detectors, which are read out using a frequency division multiplexing system based on microwave SQUIDs. The novel design allows the measurement of the [CII] line at two redshifts simultaneously using dichroic pixels and two orders of the Fabry–Perot. Here we present the design and science goals of EoR-Spec, with emphasis on the spectrometer, detector array, and readout designs.
Plasmonic flat surface Fabry-Perot interferometry
We report measurements of the optical transmission through a plasmonic flat surface interferometer. The transmission spectrum shows Fabry-Perot-like modes, where for each mode order, the maximal transmission occurs at a gap that grows linearly with wavelength, giving the appearance of diagonal dependence on gap and wavelength. The experimental results are supported by numerical solutions of the wave equations and by a simplified theoretical model that is based on the coupling between localized and propagating surface plasmon. This work explains not only the appearance of the modes but also their sharp dependence on the gap, taking into consideration the refractive indices of the surrounding media. The transmission spectra provide information about the phase difference between the light impinging on the two cavities, enabling interferometric measurement of the light phase by transmission through the coupled plasmonic cavities. The 1° phase-difference resolution is obtained without any propagation distance, thus making this interferometer suitable for on-chip operation.