Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
569
result(s) for
"Fagus - chemistry"
Sort by:
Development and verification of a water and sugar transport model using measured stem diameter variations
by
De Schepper, Veerle
,
Steppe, Kathy
in
Biological Transport
,
Carbohydrate Metabolism
,
chemistry
2010
In trees, water and sugars are transported by xylem and phloem conduits which are hydraulically linked. A simultaneous study of both flows is interesting, since they concurrently influence important processes such as stomatal regulation and growth. A few mathematical models have already been developed to investigate the influence of both hydraulically coupled flows. However, none of these models has so far been tested using real measured field data. In the present study, a comprehensive whole-tree model is developed that enables simulation of the stem diameter variations driven by both the water and sugar transport. Stem diameter variations are calculated as volume changes of both the xylem and the phloem tissue. These volume changes are dependent on: (i) water transport according to the cohesion–tension theory; (ii) sugar transport according to the Münch hypothesis; (iii) loading and unloading of sugars; and (iv) irreversible turgor-driven growth. The model considers three main compartments (crown, stem, and roots) and is verified by comparison with actual measured stem diameter variations and xylem sap flow rates. These measurements were performed on a young oak (Quercus robur L.) tree in controlled conditions and on an adult beech (Fagus sylvatica L.) tree in a natural forest. A good agreement was found between simulated and measured data. Hence, the model seemed to be a realistic representation of the processes observed in reality. Furthermore, the model is able to simulate several physiological variables which are relatively difficult to measure: phloem turgor, phloem osmotic pressure, and Münch's counterflow. Simulation of these variables revealed daily dynamics in their behaviour which were mainly induced by transpiration. Some of these dynamics are experimentally confirmed in the literature, while others are not.
Journal Article
Stabilization of soil organic matter in Luvisols under the influence of various tree species in temperate forests
2025
Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland. The study included five tree species - Scots pine (
Pinus sylvestris
L.), European larch (
Larix decidua
Mill.), pedunculate oak (
Quercus robur
L.), beech (
Fagus sylvatica
L.) and hornbeam (
Carpinus betulus
L.). Forest stands growing in the same soil conditions (Luvisols) with similar geological material (loess) and grain size were selected for the study. We evaluated labile and heavy fractions of soil organic matter (SOM). Additionally, basic physicochemical properties (pH, carbon and nitrogen content, base cation content) were determined in soil samples. The results of our study showed that soils under the influence of coniferous species were characterized by a higher content of carbon of free light fraction (C
fLF
) and carbon of occluded light fraction (C
oLF
) compared to deciduous species. Similar relationships were found with the nitrogen content of the free light fraction (N
fLF
) and nitrogen of occluded light fraction (N
oLF
). Higher C
MAF
and N
MAF
contents were recorded in soils influenced by deciduous species. The carbon, nitrogen and base cations content positively correlated with the C and N of free light fraction and occluded light fraction. PCA analysis confirmed the connection of C and N of heavy fractions (C
MAF
and N
MAF
) with deciduous species. Our research shows that avoiding single-species conifer stands and introducing admixtures of deciduous species, which increase SOM, is justified in forest management. The selection of suitable species will provide greater stand stability and contribute more to the carbon accumulation in the soil.
Journal Article
Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial
by
Hood-Nowotny, Rebecca Clare
,
Hofhansl, Florian
,
Kitzler, Barbara
in
Accumulation
,
Agricultural land
,
Agricultural production
2014
Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.
Journal Article
Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress
2014
Mycorrhizal fungi have a key role in nitrogen (N) cycling, particularly in boreal and temperate ecosystems. However, the significance of ectomycorrhizal fungal (EMF) diversity for this important ecosystem function is unknown. Here, EMF taxon-specific N uptake was analyzed via
15
N isotope enrichment in complex root-associated assemblages and non-mycorrhizal root tips in controlled experiments. Specific
15
N enrichment in ectomycorrhizas, which represents the N influx and export, as well as the exchange of
15
N with the N pool of the root tip, was dependent on the fungal identity. Light or water deprivation revealed interspecific response diversity for N uptake. Partial taxon-specific N fluxes for ectomycorrhizas were assessed, and the benefits of EMF assemblages for plant N nutrition were estimated. We demonstrated that ectomycorrhizal assemblages provide advantages for inorganic N uptake compared with non-mycorrhizal roots under environmental constraints but not for unstressed plants. These benefits were realized via stress activation of distinct EMF taxa, which suggests significant functional diversity within EMF assemblages. We developed and validated a model that predicts net N flux into the plant based on taxon-specific
15
N enrichment in ectomycorrhizal root tips. These results open a new avenue to characterize the functional traits of EMF taxa in complex communities.
Journal Article
Quantitative analysis of commercial coating penetration into Fagus crenata wood using X-ray microtomography
2024
Recent advances in wood treatment include the use of eco-friendly coatings to improve the wood’s dimensional stability and appearance. Assessing coating performance during its service life is critical for establishing a knowledge base for product optimization. Numerous approaches, including microimaging, are available for analyzing coating behavior. In addition to conventional microscopic techniques, high-resolution X-ray microtomography is a tool that provides nondestructive imaging of coatings and their substrates. In this study, we performed two-dimensional (2D) and three-dimensional (3D) visualization of tomographic reconstruction images of two coating types, spray and brush, to observe and assess the distribution of several commercial Japanese coating materials in
Fagus crenata
. X-ray images and plot profiles were used to determine the penetration depths and thicknesses of coatings. Each coated sample was scanned using X-ray microtomography, which allowed successful visualization and quantification of the coating penetration depth. Chemical content and concentration of the coating materials influenced penetration depth and amount.
Journal Article
Antileukemic Activity of Twig Components of Caucasian Beech in Turkey
2019
Despite the development of a range of anti-cancer agents, cancer diagnoses are still increasing in number, remaining a leading cause of death. Anticancer drug treatment is particularly important for leukemia. We screened Turkish plants and found the unique antileukemic activity of twig components in Turkish Caucasian beech, selectively inducing apoptosis in leukemia cells. This effect is unique among some kinds of beeches, presumably related to oxidative stress. This study would lead to effective use of discarded material, i.e., twig of beech, and a new anti-leukemic drug based on large tree.
Journal Article
Simulated nitrogen deposition affects wood decomposition by cord-forming fungi
by
Bebber, Daniel P.
,
Watkinson, Sarah C.
,
Boddy, Lynne
in
Analysis
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2011
Anthropogenic nitrogen (N) deposition affects many natural processes, including forest litter decomposition. Saprotrophic fungi are the only organisms capable of completely decomposing lignocellulosic (woody) litter in temperate ecosystems, and therefore the responses of fungi to N deposition are critical in understanding the effects of global change on the forest carbon cycle. Plant litter decomposition under elevated N has been intensively studied, with varying results. The complexity of forest floor biota and variability in litter quality have obscured N-elevation effects on decomposers. Field experiments often utilize standardized substrates and N-levels, but few studies have controlled the decay organisms. Decomposition of beech (Fagus sylvatica) blocks inoculated with two cord-forming basidiomycete fungi, Hypholoma fasciculare and Phanerochaete velutina, was compared experimentally under realistic levels of simulated N deposition at Wytham Wood, Oxfordshire, UK. Mass loss was greater with P. velutina than with H. fasciculare, and with N treatment than in the control. Decomposition was accompanied by growth of the fungal mycelium and increasing N concentration in the remaining wood. We attribute the N effect on wood decay to the response of cord-forming wood decay fungi to N availability. Previous studies demonstrated the capacity of these fungi to scavenge and import N to decaying wood via a translocating network of mycelium. This study shows that small increases in N availability can increase wood decomposition by these organisms. Dead wood is an important carbon store and habitat. The responses of wood decomposers to anthropogenic N deposition should be considered in models of forest carbon dynamics.
Journal Article
Lignin Precipitation and Fractionation from OrganoCat Pulping to Obtain Lignin with Different Sizes and Chemical Composition
by
Weidener, Dennis
,
Klose, Holger
,
Grande, Philipp M.
in
Alternative energy sources
,
Biomass
,
Biorefineries
2020
Fractionation of lignocellulose into its three main components, lignin, hemicelluloses, and cellulose, is a common approach in modern biorefinery concepts. Whereas the valorization of hemicelluloses and cellulose sugars has been widely discussed in literature, lignin utilization is still challenging. Due to its high heterogeneity and complexity, as well as impurities from pulping, it is a challenging feedstock. However, being the most abundant source of renewable aromatics, it remains a promising resource. This work describes a fractionation procedure that aims at stepwise precipitating beech wood (Fagus sp.) lignin obtained with OrganoCat technology from a 2-methyltetrahydrofuran solution, using n-hexane and n-pentane as antisolvents. By consecutive antisolvent precipitation and filtration, lignin is fractionated and then characterized to elucidate the structure of the different fractions. This way, more defined and purified lignin fractions can be obtained. Narrowing down the complexity of lignin and separately valorizing the fractions might further increase the economic viability of biorefineries.
Journal Article
Insect attraction to herbivore-induced beech volatiles under different forest management regimes
by
Weisser, Wolfgang W.
,
Gossner, Martin M.
,
Gershenzon, Jonathan
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Animals
2014
Insect herbivore enemies such as parasitoids and predators are important in controlling herbivore pests. From agricultural systems we know that land-use intensification can negatively impact biological control as an important ecosystem service. The aim of our study was to investigate the importance of management regime for natural enemy pressure and biological control possibilities in forests dominated by European beech. We hypothesize that the volatile blend released from herbivore-infested beech trees functions as a signal, attracting parasitoids and herbivore enemies. Furthermore, we hypothesize that forest management regime influences the composition of species attracted by these herbivore-induced beech volatiles. We installed flight-interception traps next to Lymantria dispar caterpillar-infested young beech trees releasing herbivore-induced volatiles and next to non-infested control trees. Significantly more parasitoids were captured next to caterpillar-infested trees compared to non-infested controls, irrespective of forest type. However, the composition of the trophic guilds in the traps did vary in response to forest management regime. While the proportion of chewing insects was highest in non-managed forests, the proportion of sucking insects peaked in forests with low management and of parasitoids in young, highly managed, forest stands. Neither the number of naturally occurring beech saplings nor herbivory levels in the proximity of our experiment affected the abundance and diversity of parasitoids caught. Our data show that herbivore-induced beech volatiles attract herbivore enemies under field conditions. They further suggest that differences in the structural complexity of forests as a consequence of management regime only play a minor role in parasitoid activity and thus in indirect tree defense.
Journal Article
Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO₂ across a beech (Fagus sylvatica L.) canopy
by
Montpied, Pierre
,
Granier, André
,
Dreyer, Erwin
in
acclimation
,
Canopy
,
Carbon Dioxide - metabolism
2009
Leaf photosynthesis is known to acclimate to the actual irradiance received by the different layers of a canopy. This acclimation is usually described in terms of changes in leaf structure, and in photosynthetic capacity. Photosynthetic capacity is likely to be affected by mesophyll conductance to CO₂ which has seldom been assessed in tree species, and whose plasticity in response to local irradiance is still poorly known. Structural [N and chlorophyll content, leaf mass to area ratio (LMA)] and functional leaf traits [maximum carboxylation rate (Vcmax), maximum light-driven electron flux (Jmax), and mesophyll conductance (gi)] were assessed by measuring leaf response curves of net CO₂ assimilation versus intercellular CO₂ partial pressure, along a vertical profile across a beech canopy, and by fitting a version of the Farquhar model including gi. The measurements were repeated five times during a growth season to catch potential seasonal variation. Irradiance gradients resulted in large decreasing gradients of LMA, gi, Vcmax, and Jmax. Relative allocation of leaf N to the different photosynthetic processes was only slightly affected by local irradiance. Seasonal changes after leaf expansion and before induction of leaf senescence were only minor. Structural equation modelling confirmed that LMA was the main driving force for changes in photosynthetic traits, with only a minor contribution of leaf Nitrogen content. In conclusion, mesophyll conductance to CO₂ displays a large plasticity that scales with photosynthetic capacity across a tree canopy, and that it is only moderately (if at all) affected by seasonal changes in the absence of significant soil water depletion.
Journal Article