Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
224 result(s) for "Fanconi Anemia Complementation Group N Protein"
Sort by:
PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1
Loss of functional BRCA1 protein leads to defects in DNA double-strand break (DSB) repair by homologous recombination (HR) and renders cells hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibitors used to treat BRCA1/2-deficient cancers. However, upon chronic treatment of BRCA1-mutant cells with PARP inhibitors, resistant clones can arise via several mechanisms, including loss of 53BP1 or its downstream co-factors. Defects in the 53BP1 axis partially restore the ability of a BRCA1-deficient cell to form RAD51 filaments at resected DSBs in a PALB2- and BRCA2-dependent manner, and thereby repair DSBs by HR. Here we show that depleting 53BP1 in BRCA1-null cells restores PALB2 accrual at resected DSBs. Moreover, we demonstrate that PALB2 DSB recruitment in BRCA1/53BP1-deficient cells is mediated by an interaction between PALB2’s chromatin associated motif (ChAM) and the nucleosome acidic patch region, which in 53BP1-expressing cells is bound by 53BP1’s ubiquitin-directed recruitment (UDR) domain. Although loss of BRCA1 leads to defects in DNA double-strand break repair by homologous recombination (HR) and renders cells hypersensitive to PARP inhibitors, resistance to the drugs can arise. Here the authors reveal that PALB2 chromatin recruitment restores HR in BRCA1-deficient cells depleted of 53BP1.
Structural analysis of genetic variants of the human tumor suppressor PALB2 coiled-coil domain
The tumor suppressor PALB2 is a key player in the homologous recombination (HR) pathway, functionally connecting BRCA proteins at the DNA damage site. PALB2 forms homodimers via its coiled-coil domain, and during HR, it forms a heterodimeric complex with BRCA1 using the same domain. However, the structural details of the human PALB2 coiled-coil domain are unknown. Several missense variants have been reported in the coiled-coil domain. The structure–function relationship of these variants is poorly understood, posing a challenge to genetic counseling. In this study, we present the solution structure of the human PALB2 coiled-coil domain, which forms an antiparallel homodimer. We then use this structure to investigate the impact of a few well-characterized missense mutations on the fold and interactions of the PALB2 coiled-coil domain. Our findings reveal a strong correlation between the structural impact of mutations and their efficiency in homologous recombination, suggesting that our approach can be applied to study other genetic variations in PALB2. These findings hold promise for improving genetic counseling and advancing cancer research.
Clinicopathological Features and Outcomes in Individuals with Breast Cancer and ATM, CHEK2, or PALB2 Mutations
IntroductionThe moderate-penetrance germline mutations ATM, CHEK2, and PALB2 are implicated in an increased risk of the development of breast cancer. Whether these mutations provide clinical utility to guide treatment strategies and prognosis remains unknown.MethodsA retrospective case–control study from a tertiary institution compared patients with stage 0–III breast cancer, and positive for ATM, CHEK2, or PALB2 mutations, with a matched cohort selected by randomization and negative for mutations. Data acquisition included demographics, histopathologic, treatment, and clinical outcome variables.ResultsA total of 145 patients with breast cancer (144 female and 1 male) were analyzed—74 mutation-positive patients (24 ATM, 26 CHEK2, 24 PALB2) and 71 mutation-negative patients. Mutation-positive patients compared with mutation-negative patients had increased family history of breast cancer (79.7 vs. 52.9%, p < 0.001) and tumor size > 2.0 cm (63.1% vs. 42.3%, p = 0.015). Patients with prior knowledge of mutational status were more likely to proceed with total mastectomy and prophylactic mastectomy (74.5% vs. 25.5%, p < 0.02; and 65.5% vs. 34.5%, p < 0.001, respectively). The unadjusted recurrence rate was higher in mutation-positive patients compared with mutation-negative patients (24.3 vs. 8.5%, p = 0.01), although mutation status was not predictive for recurrence in Cox regression analysis.ConclusionsPatients positive for ATM, CHEK2, or PALB2 mutations had increased tumor size and were more likely to undergo extensive surgeries. Mutation status was not predictive of recurrence, although this lack of effect may have been mitigated by lower rates of recurrence in those who pursued total mastectomy. Further studies are needed to confirm these findings.
BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing
The tumour suppressor complex BRCA1–BARD1 functions in the repair of DNA double-stranded breaks by homologous recombination. During this process, BRCA1–BARD1 facilitates the nucleolytic resection of DNA ends to generate a single-stranded template for the recruitment of another tumour suppressor complex, BRCA2–PALB2, and the recombinase RAD51. Here, by examining purified wild-type and mutant BRCA1–BARD1, we show that both BRCA1 and BARD1 bind DNA and interact with RAD51, and that BRCA1–BARD1 enhances the recombinase activity of RAD51. Mechanistically, BRCA1–BARD1 promotes the assembly of the synaptic complex, an essential intermediate in RAD51-mediated DNA joint formation. We provide evidence that BRCA1 and BARD1 are indispensable for RAD51 stimulation. Notably, BRCA1–BARD1 mutants with weakened RAD51 interactions show compromised DNA joint formation and impaired mediation of homologous recombination and DNA repair in cells. Our results identify a late role of BRCA1–BARD1 in homologous recombination, an attribute of the tumour suppressor complex that could be targeted in cancer therapy. The tumour suppressor complex BRCA1–BARD1, which facilitates the generation of a single-stranded DNA template during homologous recombination, also binds to the recombinase RAD51 and enhances its function. Expanded role for BRCA1 in DNA repair Two of the hereditary breast cancer susceptibility genes (BRCAs) act during the initial stages of recombinational DNA repair. BRCA1, together with BARD1, helps to form the single-stranded DNA that is then bound by another complex, BRCA2–PALB2, which facilitates loading of the central DNA strand exchange factor, RAD51. Patrick Sung and colleagues now show that BRCA1–BARD1 can also directly interact with RAD51 and stimulate the formation of the synaptic complex—a crucial intermediate that aligns the damaged and repair template DNA molecules. Because cancer cells depend on functioning DNA repair to thrive, targeting these factors may provide therapeutic value.
Structural Insight into the Mechanism of PALB2 Interaction with MRG15
The tumor suppressor protein partner and localizer of BRCA2 (PALB2) orchestrates the interactions between breast cancer susceptibility proteins 1 and 2 (BRCA1, -2) that are critical for genome stability, homologous recombination (HR) and DNA repair. PALB2 mutations predispose patients to a spectrum of cancers, including breast and ovarian cancers. PALB2 localizes HR machinery to chromatin and links it with transcription through multiple DNA and protein interactions. This includes its interaction with MRG15 (Morf-related gene on chromosome 15), which is part of many transcription complexes, including the HAT-associated and the HDAC-associated complexes. This interaction is critical for PALB2 localization in actively transcribed genes, where transcription/replication conflicts lead to frequent replication stress and DNA breaks. We solved the crystal structure of the MRG15 MRG domain bound to the PALB2 peptide and investigated the effect of several PALB2 mutations, including patient-derived variants. PALB2 interacts with an extended surface of the MRG that is known to interact with other proteins. This, together with a nanomolar affinity, suggests that the binding of MRG15 partners, including PALB2, to this region is mutually exclusive. Breast cancer-related mutations of PALB2 cause only minor attenuation of the binding affinity. New data reveal the mechanism of PALB2-MRG15 binding, advancing our understanding of PALB2 function in chromosome maintenance and tumorigenesis.
The Role of PALB2 in the DNA Damage Response and Cancer Predisposition
The deoxyribonucleic acid (DNA) damage response (DDR) is a major feature in the maintenance of genome integrity and in the suppression of tumorigenesis. PALB2 (Partner and Localizer of Breast Cancer 2 (BRCA2)) plays an important role in maintaining genome integrity through its role in the Fanconi anemia (FA) and homologous recombination (HR) DNA repair pathways. Since its identification as a BRCA2 interacting partner, PALB2 has emerged as a pivotal tumor suppressor protein associated to hereditary cancer susceptibility to breast and pancreatic cancers. In this review, we discuss how other DDR proteins (such as the kinases Ataxia Telangiectasia Mutated (ATM) and ATM- and Rad3-Related (ATR), mediators BRCA1 (Breast Cancer 1)/BRCA2 and effectors RAD51/DNA Polymerase η (Polη) interact with PALB2 to orchestrate DNA repair. We also examine the involvement of PALB2 mutations in the predisposition to cancer and the role of PALB2 in stimulating error-free DNA repair through the FA/HR pathway.
Prognostic significance of pathogenic variants in BRCA1, BRCA2, ATM and PALB2 genes in men undergoing hormonal therapy for advanced prostate cancer
BackgroundThe prognostic significance of germline variants in homologous recombination repair genes in advanced prostate cancer (PCa), especially with regard to hormonal therapy, remains controversial.MethodsGermline DNA from 549 Japanese men with metastatic and/or castration-resistant PCa was sequenced for 27 cancer-predisposing genes. The associations between pathogenic variants and clinical outcomes were examined. Further, for comparison, DNA from prostate biopsy tissue samples from 80 independent patients with metastatic PCa were analysed.ResultsForty-four (8%) patients carried germline pathogenic variants in one of the analysed genes. BRCA2 was most frequently altered (n = 19), followed by HOXB13 (n = 9), PALB2 (n = 5) and ATM (n = 5). Further, the BRCA1, BRCA2, PALB2 and ATM variants showed significant association with a short time to castration resistance and overall survival (hazard ratio = 1.99 and 2.36; 95% CI, 1.15–3.44 and 1.23–4.51, respectively), independent of other clinical variables. Based on log-rank tests, the time to castration resistance was also significantly short in patients with BRCA1, BRCA2, PALB2 or ATM somatic mutations and TP53 mutations.ConclusionsGermline variants in BRCA1, BRCA2, PALB2 or ATM are independent prognostic factors of the short duration of response to hormonal therapy in advanced PCa.
Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks
BackgroundBreast cancer (BC) is the most common malignancy in women and has a major heritable component. The risks associated with most rare susceptibility variants are not well estimated. To better characterise the contribution of variants in ATM, CHEK2, PALB2 and XRCC2, we sequenced their coding regions in 13 087 BC cases and 5488 controls from East Anglia, UK.MethodsGene coding regions were enriched via PCR, sequenced, variant called and filtered for quality. ORs for BC risk were estimated separately for carriers of truncating variants and of rare missense variants, which were further subdivided by functional domain and pathogenicity as predicted by four in silico algorithms.ResultsTruncating variants in PALB2 (OR=4.69, 95% CI 2.27 to 9.68), ATM (OR=3.26; 95% CI 1.82 to 6.46) and CHEK2 (OR=3.11; 95% CI 2.15 to 4.69), but not XRCC2 (OR=0.94; 95% CI 0.26 to 4.19) were associated with increased BC risk. Truncating variants in ATM and CHEK2 were more strongly associated with risk of oestrogen receptor (ER)-positive than ER-negative disease, while those in PALB2 were associated with similar risks for both subtypes. There was also some evidence that missense variants in ATM, CHEK2 and PALB2 may contribute to BC risk, but larger studies are necessary to quantify the magnitude of this effect.ConclusionsTruncating variants in PALB2 are associated with a higher risk of BC than those in ATM or CHEK2. A substantial risk of BC due to truncating XRCC2 variants can be excluded.
Precision screening facilitates clinical classification of BRCA2-PALB2 binding variants with benign and pathogenic functional effects
BACKGROUNDDecoding the clinical impact of genetic variants is particularly important for precision medicine in cancer. Genetic screening of mainly patients with breast and ovarian cancer has identified numerous BRCA1/BRCA2 variants of uncertain significance (VUS) that remain unclassified owing to a lack of pedigrees and functional data.METHODSHere, we used CRISPR-Select - a technology that exploits unique inbuilt controls at the endogenous locus - to assess 54 rare ClinVar VUS located in the PALB2-binding domain of BRCA2. Variant deleteriousness was examined in the absence and presence of PARPi, cisplatin, or mitomycin C.RESULTSMarked functional deficiency was observed for variants in the exon 2 donor splice region (A22 = c.66A>C, A22 = c.66A>G, A22 = c.66A>T, and D23H) and Trp31 aa (W31G, W31L, and W31C), both critical for BRCA2 function. Moreover, T10K and G25R resulted in an intermediate phenotype, suggesting these variants are hypomorphic in nature. Combining our functional results with the latest ClinGen BRCA1/2 Variant Curation Expert Panel recommendations, we classified 49 of the 54 VUS as either likely benign (n = 45) or likely pathogenic (n = 4).CONCLUSIONTherefore, CRISPR-Select is an important tool for efficient variant clinical classification. Application of this technology in the future will ultimately improve patient care.FUNDINGDanish Cancer Society, Novo Nordisk Foundation, Sygeforsikring Danmark, Børnecancerfonden, Neye-Fonden, Roche, Novartis, Pfizer, AstraZeneca, MSD, and Daiichi Sankyo Europe GmbH.
Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2
Heterozygous carriers of germ-line loss-of-function variants in the DNA repair gene PALB2 are at a highly increased lifetime risk for developing breast cancer. While truncating variants in PALB2 are known to increase cancer risk, the interpretation of missense variants of uncertain significance (VUS) is in its infancy. Here we describe the development of a relatively fast and easy cDNA-based system for the semi high-throughput functional analysis of 48 VUS in human PALB2 . By assessing the ability of PALB2 VUS to rescue the DNA repair and checkpoint defects in Palb2 knockout mouse embryonic stem (mES) cells, we identify various VUS in PALB2 that impair its function. Three VUS in the coiled-coil domain of PALB2 abrogate the interaction with BRCA1, whereas several VUS in the WD40 domain dramatically reduce protein stability. Thus, our functional assays identify damaging VUS in PALB2 that may increase cancer risk. PALB2 is an established breast cancer risk gene but the pathogenicity of many variants remains uncharacterised. Here, the authors present a cDNA-based system for the functional analysis of PALB2 variants of unknown significance.