Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
330,450 result(s) for "Fat"
Sort by:
Adipose depot-specific effects of 16 weeks of pioglitazone on in vivo adipogenesis in women with obesity: a randomised controlled trial
Aims/hypothesisIn vitro and rodent studies suggest that pioglitazone, a thiazolidinedione, can promote adipogenesis in adipose tissue (AT); however, there is a lack of in vivo studies in humans to support these findings. The objectives of this randomised, placebo-controlled, parallel-arm trial were to test if pioglitazone stimulates in vivo adipogenesis in the subcutaneous adipose tissue depots and if these measures were related to metabolic health outcomes in women with obesity.MethodsForty-one healthy women with obesity (20 black; 21 white; 29 ± 6 years; BMI 32.0 ± 1.7 kg/m2; 44.0 ± 3.6% body fat) were randomised to consume 30 mg/day of pioglitazone (n = 21) or placebo (n = 20) for 16 weeks. SAS v9.4 was used to generate the block randomisation code sequence (stored in password-protected files) with a 1:1 allocation ratio. The participants and study staff involved in assessing and analysing data outcomes were blinded to the group assignments. The trial was conducted at Pennington Biomedical Research Center and ended in 2016. At baseline and post-intervention, subcutaneous abdominal (scABD) and femoral (scFEM) AT biopsies were collected, and in vivo cellular kinetics (primary endpoint of the trial) were assessed by an 8 week labelling protocol of deuterium (2H) into the DNA of adipose cells. Body composition was measured by dual-energy x-ray absorptiometry (DXA), scABD and visceral AT (VAT) by MRI, ectopic fat by 1H-MRS, and insulin sensitivity by an OGTT.ResultsAfter the 16 week intervention, there was a significant decrease in visceral fat (VAT:total abdominal AT [as a %]; p = 0.002) and an increase in the Matsuda index (i.e. improved insulin sensitivity; p = 0.04) in the pioglitazone group relative to the placebo group. A significant increase in the formation of new adipocytes was observed in the scFEM (Δ = 3.3 ± 1.6%; p = 0.04) but not the scABD depot (Δ = 2.0 ± 2.1%; p = 0.32) in the pioglitazone group relative to the placebo group. No serious adverse events were reported.Conclusions/interpretationPioglitazone may elicit distinct differences in in vivo adipogenesis in subcutaneous adipose depots in women with obesity, with increased rates in the protective scFEM.Trial registrationClinicalTrials.govNCT01748994Funding This study was funded by R01DK090607, P30DK072476, and R03DK112006 from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health. U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health. The Robert C. and Veronica Atkins Foundation.
A Preliminary Study for Evaluating the Dose-Dependent Effect of d-Allulose for Fat Mass Reduction in Adult Humans: A Randomized, Double-Blind, Placebo-Controlled Trial
d-allulose is a rare sugar with zero energy that can be consumed by obese/overweight individuals. Many studies have suggested that zero-calorie d-allulose has beneficial effects on obesity-related metabolism in mouse models, but only a few studies have been performed on human subjects. Therefore, we performed a preliminary study with 121 Korean subjects (aged 20–40 years, body mass index ≥ 23 kg/m2). A randomized controlled trial involving placebo control (sucralose, 0.012 g × 2 times/day), low d-allulose (d-allulose, 4 g × 2 times/day), and high d-allulose (d-allulose, 7 g × 2 times/day) groups was designed. Parameters for body composition, nutrient intake, computed tomography (CT) scan, and plasma lipid profiles were assessed. Body fat percentage and body fat mass were significantly decreased following d-allulose supplementation. The high d-allulose group revealed a significant decrease in not only body mass index (BMI), but also total abdominal and subcutaneous fat areas measured by CT scans compared to the placebo group. There were no significant differences in nutrient intake, plasma lipid profiles, markers of liver and kidney function, and major inflammation markers among groups. These results provide useful information on the dose-dependent effect of d-allulose for overweight/obese adult humans. Based on these results, the efficacy of d-allulose for body fat reduction needs to be validated using dual energy X-ray absorption.
Prediction of Circulating Adipokine Levels Based on Body Fat Compartments and Adipose Tissue Gene Expression
Background: Adipokines are hormones secreted from adipose tissue (AT), and a number of them have been established as risk factors for chronic diseases. However, it is not clear whether and to what extent adiposity, gene expression, and other factors determine their circulating levels. Objectives: To assess to what extent adiposity, as measured by the amount of subcutaneous AT (SAT) and visceral AT (VAT) using magnetic resonance imaging, and gene expression levels in SAT determine plasma concentrations of the adipokines adiponectin, leptin, soluble leptin receptor, resistin, interleukin 6, and fatty acid-binding protein 4 (FABP4). Methods: We performed a cross-sectional analysis of 156 participants from the EPIC Potsdam cohort study and analyzed multiple regression models and partial correlation coefficients. Results: For leptin and FABP4 concentrations, 81 and 45% variance were explained by SAT mass, VAT mass, and gene expression in SAT in multivariable regression models. For the remaining adipokines, AT mass and gene expression explained <16% variance of plasma concentrations. Gene expression in SAT was a less important predictor compared to AT mass. SAT mass was a better predictor than VAT mass for leptin (partial correlation r = 0.81, 95% confidence interval 0.75–0.86, vs. r = 0.58, 95% confidence interval 0.46–0.67), while differences between AT compartments were small for the other adipokines. Conclusions: While plasma levels of leptin and FABP4 can be explained in a large and medium part by the amount of AT and SAT gene expression, surprisingly, these predictors explained only little variance for all other investigated adipokines.
A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults
Purpose We sought to determine the effects of dietary fat on insulin sensitivity and whether changes in insulin sensitivity were explained by changes in abdominal fat distribution or very low-density lipoprotein (VLDL) fatty acid composition. Methods Overweight/obese adults with normal glucose tolerance consumed a control diet (35 % fat/12 % saturated fat/47 % carbohydrate) for 10 days, followed by a 4-week low-fat diet (LFD, n  = 10: 20 % fat/8 % saturated fat/62 % carbohydrate) or high-fat diet (HFD, n  = 10: 55 % fat/25 % saturated fat/27 % carbohydrate). All foods and their eucaloric energy content were provided. Insulin sensitivity was measured by labeled hyperinsulinemic-euglycemic clamps, abdominal fat distribution by MRI, and fasting VLDL fatty acids by gas chromatography. Results The rate of glucose disposal (Rd) during low- and high-dose insulin decreased on the HFD but remained unchanged on the LFD (Rd-low: LFD: 0.12 ± 0.11 vs. HFD: −0.37 ± 0.15 mmol/min, mean ± SE, p  < 0.01; Rd-high: LFD: 0.11 ± 0.37 vs. HFD: −0.71 ± 0.26 mmol/min, p  = 0.08). Hepatic insulin sensitivity did not change. Changes in subcutaneous fat were positively associated with changes in insulin sensitivity on the LFD ( r  = 0.78, p  < 0.01) with a trend on the HFD ( r  = 0.60, p  = 0.07), whereas there was no association with intra-abdominal fat. The LFD led to an increase in VLDL palmitic (16:0), stearic (18:0), and palmitoleic (16:1n7c) acids, while no changes were observed on the HFD. Changes in VLDL n-6 docosapentaenoic acid (22:5n6) were strongly associated with changes in insulin sensitivity on both diets (LFD: r  = −0.77; p  < 0.01; HFD: r  = −0.71; p  = 0.02). Conclusions A diet very high in fat and saturated fat adversely affects insulin sensitivity and thereby might contribute to the development of type 2 diabetes. ClinicalTrials.gov Identifier NCT00930371.
It's all good : delicious, easy recipes that will make you look good and feel great
Together with Julia Turshen, Paltrow presents a collection of 185 recipes that will aid health, energy, and appearance. Recipes include huevos rancheros, Korean chicken tacos, salmon burgers with pickled ginger, power brownies, and banana \"ice cream,\" all without fat, sugar, or gluten.
CT Fat Density Accurately Reflects Histologic Fat Quality in Adults With HIV On and Off Antiretroviral Therapy
Abstract Context Microscopic measurement of adipocyte size is the gold standard for determining adipose tissue (AT) quality. AT density on CT may also reflect adipocyte quality (lower density = poorer quality). Objective We used abdominal subcutaneous AT (SAT) specimens and CT scans to validate CT SAT density as a marker of SAT quality in adults living with HIV. Setting and Design Secondary data analysis from completed trial of antiretroviral therapy (ART) initiation (ACTG A5224s). CT abdominal SAT density was measured in HU. SAT specimens were digitally scanned for calculation of mean adipocyte area. Participants Participants had SAT biopsy and CT data at baseline (n = 54) and HIV-1 RNA <50 copies per milliliter on ART and biopsy or CT data at week 96 (n = 30). Outcome Measures Spearman correlations and linear regression models adjusting for participant characteristics examined associations between SAT density and adipocyte area. Results Baseline median age was 40 years, CD4+ T lymphocyte count 219 cells per cubic millimeter, and body mass index 26.0 kg/m2; 89% were male and 67% white. Median SAT area and density were 199 cm2 and −100 HU. Over 96 weeks, SAT area increased (+18%) and SAT density decreased (−3%). Mean SAT adipocyte area correlated with SAT density (P < 0.01) off and on ART after adjustment for SAT area, age, race, sex, CD4+ T lymphocyte count, and HIV-1 RNA. Conclusions CT SAT density correlates with biopsy-quantified SAT adipocyte size in adults with HIV on and off ART, suggesting that CT is a useful tool for noninvasive assessment of SAT quality. In adults living with HIV on and off antiretroviral therapy, CT subcutaneous fat density measurement reflects histologic adipocyte size and can be used as a noninvasive measure of adipocyte function.