Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,818 result(s) for "Feces - parasitology"
Sort by:
Use of shotgun metagenomics for the identification of protozoa in the gut microbiota of healthy individuals from worldwide populations with various industrialization levels
Protozoa have long been considered undesirable residents of the human gut, but recent findings suggest that some of them may positively affect the gut ecosystem. To better understand the role and ecological dynamics of these commensal and potentially beneficial protozoan symbionts, we need efficient methods to detect them, as well as accurate estimates of their prevalence across human populations. Metagenomics provides such an opportunity, allowing simultaneous detection of multiple symbionts in a single analytical procedure. In this study, we collected fecal samples of 68 individuals from three Cameroonian populations with different subsistence modes and compared metagenomics-based and targeted methods of detection for two common protozoan genera: Blastocystis and Entamoeba. In addition, we analyzed our data along with publicly available fecal metagenomes from various worldwide populations to explore the prevalence and association patterns of ten protozoan genera. Regarding the detection method, microscopy was much less sensitive than metagenomics for Entamoeba, whereas qPCR was at least as sensitive as metagenomics for Blastocystis sp. However, metagenomics was more likely to detect co-colonizations by multiple subtypes. Out of the ten examined genera in 127 individuals from Cameroon, Tanzania, Peru, Italy or USA, only three (Blastocystis, Entamoeba and Enteromonas) had an overall prevalence exceeding 10%. All three genera were more common in less industrialized populations and their prevalence differed between continents and subsistence modes, albeit not in a straightforward manner. The majority (72.5%) of colonized individuals carried at least two protozoan species, indicating that mixed-species colonizations are common. In addition, we detected only positive and no negative association patterns between different protozoa. Despite the pitfalls of the metagenomic approach, ranging from the availability of good-quality sequencing data to the lack of standard analytical procedures, we demonstrated its utility in simultaneous detection of multiple protozoan genera, and especially its ability to efficiently detect mixed-species colonizations. Our study corroborates and expands prevalence results previously obtained for Blastocystis sp. and provides novel data for Entamoeba spp. and several other protozoan genera. Furthermore, it indicates that multiple protozoa are common residents of the healthy human gut worldwide.
Prevalence and subtype distribution of Blastocystis sp. isolates from poultry in Lebanon and evidence of zoonotic potential
Background Blastocystis sp. is a common protozoan parasite frequently identified in the digestive tract of humans and a large variety of animal hosts worldwide, including birds. It exhibits a large genetic diversity with the identification of 17 subtypes (STs), most of them with low host specificity. ST6 and ST7 were identified in birds and suggested to represent avian STs only in the context of scarce small-scale epidemiological surveys. Moreover, these two STs also account for a significant proportion of human infections whose zoonotic origin has never been clearly confirmed. Therefore, molecular screening of Blastocystis sp. was conducted by quantitative real-time PCR for fecal samples from poultry farms and their in-contact humans from slaughterhouses in Lebanon. In parallel, a control group consisting of patients hospitalized in the same geographical area and reporting no contact with poultry was also screened for the presence of the parasite. Results The overall prevalence of Blastocystis sp. was shown to reach around 32% in chicken samples and 65% in the farms screened. All the avian isolates were subtyped and belonged to either ST6 or ST7, with a large predominance of ST6. Fifty-four percent of slaughterhouse staff members were positive for Blastocystis sp. compared with a similar prevalence of 56% in hospitalized patients. ST3 was predominant in both human cohorts followed by either ST1 then ST2 among slaughterhouse staff or by ST2 then ST1 among hospitalized patients. ST6 was also identified in two slaughterhouse workers and not in the group of hospitalized patients. Gene sequence identity was observed between chicken and human ST6 isolates from the same slaughterhouse. Conclusions Our data revealed a high prevalence of Blastocystis sp. in chicken samples and confirmed that ST6 and ST7 represented avian-adapted STs. Among both human cohorts, Blastocystis sp. infection was shown to exceed 50% with a predominance of ST3. The identification of ST6 in slaughterhouse staff members confirmed the zoonotic transmission of this ST through repeated and direct contact between chickens and their handlers.
Parasites of domestic owned cats in Europe: co-infestations and risk factors
BACKGROUND: Domestic cats can be infested by a large range of parasite species. Parasitic infestations may cause very different clinical signs. Endoparasites and ectoparasites are rarely explored in the same study and therefore multiparasitism is poorly documented. The present survey aimed to improve knowledge of the prevalence and risk factors associated with ecto- and endoparasite infestations in owned cats in Europe. METHODS: From March 2012 to May 2013, 1519 owned cats were included in a multicenter study conducted in 9 veterinary faculties throughout Europe (Austria, Belgium, France, Hungary, Italy, Romania and Spain). For each cat, ectoparasites were checked by combing of the coat surface associated with otoscopic evaluation and microscopy on cerumen samples. Endoparasites were identified by standard coproscopical examinations performed on fresh faecal samples. Risk factors and their influence on parasitism were evaluated by univariate analysis followed by a multivariate statistical analysis (including center of examination, age, outdoor access, multipet status, and frequency of treatments as main criteria) with logistic regression models. RESULTS: Overall, 50.7% of cats resulted positive for at least one internal or one external parasite species. Ectoparasites were found in 29.6% of cats (CI₉₅27.3-32.0%). Otodectes cynotis was the most frequently identified species (17.4%), followed by fleas (15.5%). Endoparasites were identified in 35.1% of the cats (CI₉₅32.7-35.7%), including gastro-intestinal helminths in 25.7% (CI₉₅23.5-28.0), respiratory nematodes in 5.5% (CI₉₅4.2-7.0%) and protozoans in 13.5% (CI₉₅11.8-15.3%). Toxocara cati was the most commonly diagnosed endoparasite (19.7%, CI₉₅17.8-21.8%). Co-infestation with endoparasites and ectoparasites was found in 14.0% of the cats, and 11.9% harbored both ectoparasites and gastro-intestinal helminths. Age, outdoor access, living with other pets, and anthelmintic or insecticide treatments were significantly associated with the prevalence of various parasites. CONCLUSIONS: This survey demonstrates that parasitism is not a rare event in European owned cat populations. The prevalence of multi-parasitism is significantly greater than expected by chance and hence there is tendency for some individual cats to be more prone to infestation by both endo- and ectoparasites due to common risk factors.
Real-time PCR for diagnosis of imported schistosomiasis
The diagnosis of schistosomiasis currently relies on microscopic detection of schistosome eggs in stool or urine samples and serological assays. The poor sensitivity of standard microscopic procedures performed in routine laboratories, makes molecular detection methods of increasing interest. The aim of the study was to evaluate two in-house real-time Schistosoma PCRs, targeting respectively S. mansoni [Sm] and S. haematobium [Sh] in excreta, biopsies and sera as potential tools to diagnose active infections and to monitor treatment efficacy. Schistosoma PCRs were performed on 412 samples (124 urine, 86 stools, 8 biopsies, 194 sera) from patients with suspected schistosomiasis, before anti-parasitic treatment. Results were compared to microscopic examination and serological assays (enzyme-linked immunosorbent assay (ELISA), indirect haemagglutination (HA) and Western Blot (WB) assay). Compared to microscopy, PCRs significantly increased the sensitivity of diagnosis, from 4% to 10.5% and from 33.7% to 48.8%, for Sh in urine and Sm in stools, respectively. The overall sensitivity of PCR on serum samples was 72.7% and reached 94.1% in patients with positive excreta (microscopy). The specificity of serum PCR was 98.9%. After treatment, serum PCR positivity rates slowly declined from 93.8% at day 30 to 8.3% at day 360, whereas antibody detection remained positive after 1 year. Schistosoma PCRs clearly outperform standard microscopy on stools and urine and could be part of reference methods combined with WB-based serology, which remains a gold standard for initial diagnosis. When serological assays are positive and microscopy is negative, serum PCRs provide species information to guide further clinical exploration. Biomarkers such as DNA and antibodies are of limited relevance for early treatment monitoring but serum PCR could be useful when performed at least 1 year after treatment to help confirm a cured infection.
EmsB Microsatellite Analysis of Echinococcus multilocularis Specimens Isolated from Belgian Patients with Alveolar Echinococcosis and from Animal Hosts
Alveolar echinococcosis (AE), caused by Echinococcus multilocularis (E. multilocularis), is a severe parasitic zoonosis that is potentially fatal for humans. The parasite is primarily transmitted by wildlife, with red foxes acting as definitive hosts and rodents as intermediate hosts, while humans can become accidental but dead-end hosts. The aim of this study is to use EmsB typing on E. multilocularis isolates from human AE cases and local animals such as foxes and rodents. In this study, retrospective EmsB typing was performed on 39 samples, including 11 tissue samples from 10 patients, 18 fecal swabs from foxes, and 10 tissue samples from rodents. A dendrogram was created to determine the EmsB profiles present. The results showed that all the rodent samples were associated with the EmsB P1 profile (10/10), while the human and fox samples shared the EmsB profile P1 (5/11 humans and 8/18 foxes), a profile near P4 (2/11 humans and 3 foxes), and a profile near P8 (1/11 humans and 1/18 foxes). The study demonstrates that the same EmsB profiles circulate among humans and animals, confirming that wildlife reservoirs play a key role in transmission.
Mapping QTL influencing gastrointestinal nematode burden in Dutch Holstein-Friesian dairy cattle
Background Parasitic gastroenteritis caused by nematodes is only second to mastitis in terms of health costs to dairy farmers in developed countries. Sustainable control strategies complementing anthelmintics are desired, including selective breeding for enhanced resistance. Results and Conclusion To quantify and characterize the genetic contribution to variation in resistance to gastro-intestinal parasites, we measured the heritability of faecal egg and larval counts in the Dutch Holstein-Friesian dairy cattle population. The heritability of faecal egg counts ranged from 7 to 21% and was generally higher than for larval counts. We performed a whole genome scan in 12 paternal half-daughter groups for a total of 768 cows, corresponding to the ~10% most and least infected daughters within each family (selective genotyping). Two genome-wide significant QTL were identified in an across-family analysis, respectively on chromosomes 9 and 19, coinciding with previous findings in orthologous chromosomal regions in sheep. We identified six more suggestive QTL by within-family analysis. An additional 73 informative SNPs were genotyped on chromosome 19 and the ensuing high density map used in a variance component approach to simultaneously exploit linkage and linkage disequilibrium in an initial inconclusive attempt to refine the QTL map position.
Socially transmitted gut microbiota protect bumble bees against an intestinal parasite
Populations of important pollinators, such as bumble bees and honey bees, are declining at alarming rates worldwide. Parasites are likely contributing to this phenomenon. A distinct resident community of bacteria has recently been identified in bumble bees and honey bees that is not shared with related solitary bee species. We now show that the presence of these microbiota protects bee hosts against a widespread and highly virulent natural parasite (Crithidia bombi) in an experimental setting. We add further support to this antagonistic relationship from patterns found in field data. For the successful establishment of these microbiota and a protective effect, exposure to feces from nest mates was needed after pupal eclosion. Transmission of beneficial gut bacteria could therefore represent an important benefit of sociality. Our results stress the importance of considering the host microbiota as an \"extended immune phenotype\" in addition to the host immune system itself and provide a unique perspective to understanding bees in health and disease.
Establishing a Fecal Microbiota Transplant Service for the Treatment of Clostridium difficile Infection
Recurrent or refractory Clostridium difficile infection (CDI) has become an increasing problem in the past decade. Fecal microbiota transplant (FMT) is a highly efficacious treatment for recurrent CDI; however, a number of technical, logistical, and regulatory issues have hampered the development of an FMT capability at many hospitals. The development of a frozen stool bank of screened donor stool is an important step in the standardization of the procedure. This gives clinicians rapid access to thoroughly screened donor stool when needed, without the ethical and logistical problems associated with patient-selected donors. We describe the practicalities of establishing such a service using a stool bank of prescreened donor stool including detail regarding donor recruitment and screening, stool preparation, and delivery of the FMT.
The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals
Here the authors provide an extension of their original FLOTAC protocol, describing the Mini-FLOTAC technique, optimized to perform diagnosis of helminth and protozoan infections in humans and animals where centrifugation may not be practical. This protocol is an extension to: Nat. Protoc.5, 503–515 (2010); doi: 10.1038/nprot.2009.235; published online 25 February 2010 The FLOTAC is a sensitive, accurate, and precise technique for the diagnosis of protozoan and helminth infections in humans and animals. However, it requires centrifugation, and hence might be out of reach in resource-constrained settings. As an extension of the original FLOTAC protocol, this protocol describes the Mini-FLOTAC technique, a logical evolution of FLOTAC conceived to perform multivalent, qualitative, and quantitative diagnosis of helminth and protozoan infections in human and animal feces, and urine. This has been found to be of most use in the processing of large numbers of samples with rapid laboratory workup, and for veterinary applications directly on-farm. In addition to the Mini-FLOTAC apparatus, we describe the use of the Fill-FLOTAC, a closed system used to facilitate the performance of the first four consecutive steps of the Mini-FLOTAC technique: fecal sample collection and weighing, homogenization, filtration, and filling of the Mini-FLOTAC chambers. Processing of an individual sample using this protocol requires ∼12 min.
Optimization of Quantitative PCR Methods for Enteropathogen Detection
Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen's extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease.