Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,752 result(s) for "Feline"
Sort by:
The quadruplex TaqMan MGB fluorescent quantitative PCR method for simultaneous detection of feline panleukopenia virus, feline herpesvirus 1, feline calicivirus and feline infectious peritonitis virus
Feline panleukopenia, feline calicivirus infection, feline viral rhinotracheitis, and feline infectious peritonitis are significant diseases that threaten feline health. The trend of mixed infections is increasing, and current diagnostic methods are limited in scope and unable to provide rapid, simultaneous detection of these diseases. Four groups of primers and probes targeting the gene of Feline Panleukopenia virus (FPV), the gene of Feline Herpesvirus (FHV-1), the gene of Feline Calicivirus (FCV), and the gene of Feline Infectious Peritonitis Virus (FIPV) were designed. After optimizing the concentrations of primers and probes and annealing temperature, a quadruplex TaqMan MGB fluorescent quantitative PCR method was established to concurrently detect these four pathogens. Recombinant plasmid standards were constructed to establish standard curves, and the sensitivity, specificity, reproducibility, and clinical application of the assay were evaluated. The optimal final concentrations of primers for FPV, FHV-1, FCV, and FIPV were 0.08, 0.04, 0.06, and 0.12 μM, respectively, and the optimal final concentrations of probes were 0.08, 0.08, 0.12, and 0.12 μM, respectively. The best annealing temperature was 59°C. No cross-reaction was observed with common pathogens in infected cats. The minimal detection limits for recombinant plasmids of T-VP2, T-TK, T-ORF2, and T-N were 50.79, 53.21, 47.91 and 41.25 copies/μL, respectively. The R² values of standard curves are 0.994, 1.0, 0.998 and 0.999, respectively, and high amplification efficiencies of 105.05%, 96.28%, 98.82%, and 96.45%, respectively. The coefficient of variation for inter-batch and intra-batch tests ranged from 0.14 to 1.37%. Among 381 fecal samples from cats, the detection rates for FPV, FHV-1, FCV, and FIPV were 13.65% (52/381), 18.37% (70/381), 26.77% (102/381), and 9.71% (37/381), respectively, with a 100% agreement with previously reported methods and commercial kits. The sensitive, specific, high-throughput, quadruplex TaqMan MGB quantitative fluorescent quantitative PCR method was successfully established for the simultaneous detection of FPV, FHV-1, FCV, and FIPV.
Short Treatment of 42 Days with Oral GS-441524 Results in Equal Efficacy as the Recommended 84-Day Treatment in Cats Suffering from Feline Infectious Peritonitis with Effusion—A Prospective Randomized Controlled Study
In the past, feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) was considered fatal. Today, highly efficient drugs, such as GS-441524, can lead to complete remission. The currently recommended treatment duration in the veterinary literature is 84 days. This prospective randomized controlled treatment study aimed to evaluate whether a shorter treatment duration of 42 days with oral GS-441524 obtained from a licensed pharmacy is equally effective compared to the 84-day regimen. Forty cats with FIP with effusion were prospectively included and randomized to receive 15 mg/kg of GS-441524 orally every 24h (q24h), for either 42 or 84 days. Cats were followed for 168 days after treatment initiation. With the exception of two cats that died during the treatment, 38 cats (19 in short, 19 in long treatment group) recovered with rapid improvement of clinical and laboratory parameters as well as a remarkable reduction in viral loads in blood and effusion. Orally administered GS-441524 given as a short treatment was highly effective in curing FIP without causing serious adverse effects. All cats that completed the short treatment course successfully were still in complete remission on day 168. Therefore, a shorter treatment duration of 42 days GS-441524 15 mg/kg can be considered equally effective.
A retrospective study of clinical and laboratory features and treatment on cats highly suspected of feline infectious peritonitis in Wuhan, China
Feline infectious peritonitis (FIP) is a systemic, potentially fatal viral disease. The objectives of this study were to review clinical and laboratory features and treatment of cats highly suspected of FIP in Wuhan, China. The clinical records of 127 cats highly suspected of FIP were reviewed for history, clinical signs, physical findings, and diagnostic test results. Sex, neutering status, breed, age, and month of onset of disease were compared with the characteristics of the clinic population. Age and neutering status were significantly correlated with FIP-suspicion. Sex, breed and onset month were not associated with FIP. There were many more FIP-suspected cases in cats in young cats or male intact cats. Effusion was observed in 85.8% of the FIP-suspected cats. Increased serum amyloid A (SAA) and lymphopenia were common laboratory abnormalities in the FIP cases. Furthermore, 91.7% of the cats highly suspected of FIP had an albumin/globulin (A/G) ratio < 0.6, while 85.3% had an A/G ratio < 0.5. The mortality rate for FIP-suspected cats was 67%, and six submitted cases were confirmed by FIP-specific immunohistochemistry. Of the 30 cats treated with GS-441524 and/or GC376, 29 were clinically cured. The study highlights the diverse range of clinical manifestations by clinicians in diagnosing this potentially fatal disease. A/G ratio and SAA were of higher diagnostic value. GS-441524 and GC376 were efficient for the treatment of FIP-suspected cats.
Establishment of one-step duplex TaqMan real-time PCR for detection of feline coronavirus and panleukopenia virus
A comparative genomic analysis of feline coronavirus (FCoV) and feline panleukopenia virus (FPLV) was performed. Based on the conserved regions of the two viruses, specific probes and real-time PCR (qPCR) primers were designed, and a duplex TaqMan qPCR-based assay was established for detecting FCoV and FPLV. The results showed high analytical specificity, and no cross-response with other feline viruses was observed. This method is highly versatile and can be used to detect all FCoV strains stored in laboratories and recombinant plasmids constructed according to the sequences of blank FCoV strains in laboratories. The analytical sensitivity of this method in detecting FCoV and FPLV was as low as 50 copies/μL, which is approximately 20-fold greater than that of conventional PCR. The coefficients of variation (CVs) for the intra- and interbatch coefficients of variation were less than 2%. After 75 clinical samples were tested, the percentage of FCoV- and FPLV-positive samples was 5.34% greater than that of conventional PCR methods, a finding robustly supported by sequencing identification. As validated by clinical samples, the method was sensitive, specific, general, and reproducible and holds great potential for the rapid identification and diagnosis of FCoV and FPLV infections, as well as for epidemiological investigations. Key points • One-step duplex TaqMan real-time PCR detection method can detect FCoV and FPLV in clinical samples simultaneously and steadily. • Almost all the currently known FCoV and FPLV strains can be detected. • This method has high sensitivity, specificity and generality.
A Retrospective Study of Viral Molecular Prevalences in Cats in Southern Italy (Campania Region)
From 2019 to 2021, a retrospective molecular study was conducted in the Campania region (southern Italy) to determine the prevalence of viral diseases in domestic cats. A total of 328 dead animals were analyzed by Real-Time PCR for the presence of feline panleukopenia virus (FPV), feline leukemia virus (FeLV), feline enteric coronavirus (FCoV), rotavirus (RVA), feline herpesvirus type 1 (FHV-1), and feline calicivirus (FCV). The possible presence of SARS-CoV-2 was also investigated by Real-Time PCR. The cats included in this study were specifically sourced and referred by local veterinarians and local authorities to the Zooprofilactic Experimental Institute of Southern Italy (IZSM) for pathological evaluation. The samples consisted of owners, catteries, and stray cats. Results revealed: 73.5% positive cats for FPV (189/257), 23.6% for FeLV (21/89), 21.5% for FCoV (56/266), 11.4% for RVA (16/140), 9.05% for FeHV-1 (21/232), and 7.04 for FCV (15/213). In contrast, SARS-CoV-2 was never detected. FPV was more prevalent in winter (p = 0.0027). FCoV FHV-1, FCV, and RVA predominated in autumn, whereas FeLV predominated in summer. As expected, viral infections were found more frequently in outdoor and shelter cats than in indoor ones, although no statistical association was found between animal lifestyle and viral presence. The study showed a high prevalence of FPV, FeLV, and FCoV and a moderate prevalence of RVA, FHV-1, and FCV. Moreover, the prevalence of these pathogens varied among the cat populations investigated.
Whole blood RNA profiling in cats dissects the host immunological response during recovery from feline infectious peritonitis
Feline infectious peritonitis (FIP) is caused by infection with the feline coronavirus (FCoV) and is fatal if left untreated. In most cats, FCoV primarily infects the gastrointestinal tract and remains asymptomatic or causes only mild enteritis, with only a small proportion of infected cats developing FIP. An excessive and harmful immune response leading to characteristic (pyo)granulomatous phlebitis is believed to play a key role in the development of FIP, along with complex interactions between host and viral factors. Our research group recently demonstrated successful treatment of cats with naturally occurring FIP using the antiviral nucleoside analogue GS-441524. Treatment led to complete recovery without any relapses for a follow-up period of one year, demonstrating both a short- and long-term cure. To investigate differential gene expression and corresponding molecular pathways in cats with FIP before, during, and after antiviral treatment, RNA sequencing was performed on full blood samples of 18 cats treated successfully in a prospective study. Samples were analyzed before treatment, at different timepoints while on treatment with GS-441524 and after completion of treatment. Additionally, gene expression profiles were compared to 12 healthy FCoV-infected control cats and 5 healthy uninfected control cats. The results revealed both a widespread dysregulation of the blood RNA signature in cats with FIP as well as its rapid normalization within the first week of treatment. Significant changes were already apparent within the first two days of treatment. The results of the present study suggest that elimination of the virus from the blood leads to rapid control and subsequent normalization of the damaging immune response, a finding that corresponds well to the clinical response to treatment. This study illustrates the host response to treatment at the molecular level and provides further evidence that a shorter treatment duration than the 84 days predominantly practiced is sufficient.
Viral Coinfections Potentially Associated with Feline Chronic Gingivostomatitis in Cats with Feline Infectious Peritonitis
Feline infectious peritonitis (FIP) is a fatal but now treatable disease in cats caused by feline coronavirus (FCoV). This study prospectively investigated viral coinfections in 100 cats diagnosed with FIP and subsequently treated with oral GS-441524 (Bova UK) and their influence on outcome, focusing on viruses potentially associated with feline chronic gingivostomatitis (FCGS). Cats were tested for feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), feline calicivirus (FCV), feline herpesvirus (FHV), feline foamy virus (FFV), and feline gammaherpesvirus (FcaGHV1). Coinfections were identified at the following frequencies: FCV (27), FFV (22), FHV (6), FIV (4), FcaGHV1 (2), and FeLV (2, both progressive infections). FFV infection was significantly associated with FIV (pF = 0.0021) and FHV (pF = 0.0226) infection. FCGS was present in 25/97 cats with FCV infection being associated with FCGS (pF = 0.0032); no significant associa-tions were found for the other viruses and FCGS. The 42-day oral GS-441524 treatment’s success rate was 94% (five cats died, one relapsed). Coinfections did not significantly influence disease severity or treatment outcome, although the low number of cases for some pathogens warrants further investigation. However, advanced age was associated with treatment failure, potentially due to delayed diagnosis as FIP is considered to be less common in older individuals, or to age-related changes in immune function. In summary, viral coinfections, particularly with FCV, were common and should be considered in the clinical and hygienic management of cats with FIP.
Molecular epidemiology of type I and II feline coronavirus from cats with suspected feline infectious peritonitis in China between 2019 and 2021
Feline infectious peritonitis (FIP) is one of the deadliest diseases of cats in China. In this study, 120 ascitic fluid samples from FIP-suspected cats were collected from veterinary hospitals in 21 provinces in China between 2019 and 2021. One hundred nine samples were positive for feline coronavirus (FCoV), with no feline immunodeficiency virus infections and one feline leukemia virus infection (1/109, 0.92%). The prevalence of FCoV was significantly associated with age (p < 0.01) and was not highly associated with gender, breed, geographical location, or viral coinfection (p > 0.01). One unique strain, SD/202012/003, contained a six-nucleotide deletion in the spike gene. Sequence analysis showed that 94.68% (89/94) of the isolates had a mutation of methionine to leucine at position 1058 in the spike protein. The epidemiological data obtained of FCoV in this study may be beneficial for clinical monitoring of FCoV in China.
Co-infection with feline retrovirus is related to changes in immunological parameters of cats with sporotrichosis
Feline sporotrichosis due to Sporothrix brasiliensis is frequently severe and often correlated to zoonotic transmission. Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV) cause immunodeficiency in cats; no association has been identified with critical cases of sporotrichosis. Moreover, the cytokine profile in Sporothrix-infected cats and a potential impact of retrovirus co-infections on their immunity is unknown. This study assessed immunological parameters in cats with sporotrichosis with and without FIV or FeLV co-infection. FeLV infection was detected by antigen ELISA and by provirus PCR. FIV infection was investigated through ELISA and Western blot. Cytokine transcription (IFN-γ, IL-4, IL-5, IL-6, IL-10, IL-12, TNF-α) was quantified using RT-qPCR and lymphocyte subpopulations (CD4, CD8, CD5 and CD21) were assessed by flow cytometry. Thirty cats with sporotrichosis were recruited to the study, including three FIV-positive and five FeLV-positive (progressive infection) cats. One cat with regressive FeLV infection was excluded from statistics. In comparison to retrovirus-negative cats, FIV-positive cats and FeLV-positive cats had higher IL-10 levels, FeLV-positive cats had lower IL-4 levels and FIV-positive cats had lower IL-12 levels and a lower CD4+/CD8+ ratio. Remarkably, all cats with poor general condition were FeLV (progressive infection) or FIV-positive, but the retrovirus status was not associated with the sporotrichosis treatment length or outcome. The immunological changes and the more severe clinical presentation observed in cats with retrovirus co-infections encourage future prospective studies that address the impact of these changes on prognostic determinants of feline sporotrichosis and the development of new therapy strategies that control disease spread.
Molecular survey of selected viral pathogens in wild leopard cats (Prionailurus bengalensis) in Taiwan with an emphasis on the spatial and temporal dynamics of carnivore protoparvovirus 1
The leopard cat (Prionailurus bengalensis) was listed as an endangered species under the Wildlife Conservation Act in Taiwan in 2009. However, no study has evaluated the possible direct or indirect effects of pathogens on the Taiwanese leopard cat population. Here, we targeted viral pathogens, including carnivore protoparvovirus 1 (genus Protoparvovirus), feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), coronaviruses (CoVs), and canine distemper virus (CDV), through molecular screening. The spatial and temporal dynamics of the target pathogens were evaluated. Through sequencing and phylogenetic analysis, we clarified the phylogenetic relationship of viral pathogens isolated from leopard cats and domestic carnivores. Samples from 23 live-trapped leopard cats and 29 that were found dead were collected from 2015 to 2019 in Miaoli County in northwestern Taiwan. Protoparvoviruses and CoVs were detected in leopard cats, and their prevalence (95% confidence interval) was 63.5% (50.4%–76.6%) and 8.8% (0%–18.4%), respectively. Most of the protoparvovirus sequences amplified from Taiwanese leopard cats and domestic carnivores were identical. All of the CoV sequences amplified from leopard cats were identified as feline CoV. No spatial or temporal aggregation of protoparvovirus infection in leopard cats was found in the sampling area, indicating a wide distribution of protoparvoviruses in the leopard cat habitat. We consider sympatric domestic carnivores to be the probable primary reservoir for the identified pathogens. We strongly recommend management of protoparvoviruses and feline CoV in the leopard cat habitat, particularly vaccination programs and population control measures for free-roaming dogs and cats.