Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,684 result(s) for "Ferroelectric domains"
Sort by:
Research Progress on Femtosecond Laser Poling of Ferroelectrics
Ferroelectric domain engineering has wide applications in optical and electronic industries. Compared with traditional electric field poling, femtosecond laser poling has many advantages, such as higher fabrication resolution, 3D engineering applicability, and lower costs of production. In this review, the recent research progress on ferroelectric domain engineering with femtosecond laser pulses is presented. We show the latest results, including complex domain structures fabricated in various kinds of ferroelectric crystals, and discuss the influence of laser poling parameters and conditions on the morphologies of inverted domains and their physical mechanisms. The technical challenges to overcome in future are also briefly discussed.
Phase Transition Effect on Ferroelectric Domain Surface Charge Dynamics in BaTiO3 Single Crystal
The ferroelectric domain surface charge dynamics after a cubic-to-tetragonal phase transition on the BaTiO3 single crystal (001) surface was directly measured through scanning probe microscopy. The captured surface potential distribution shows significant changes: the domain structures formed rapidly, but the surface potential on polarized c domain was unstable and reversed its sign after lengthy lapse; the high broad potential barrier burst at the corrugated a-c domain wall and continued to dissipate thereafter. The generation of polarization charges and the migration of surface screening charges in the surrounding environment take the main responsibility in the experiment. Furthermore, the a-c domain wall suffers large topological defects and polarity variation, resulting in domain wall broadening and stress changes. Thus, the a-c domain wall has excess energy and polarization change is inclined to assemble on it. The potential barrier decay with time after exposing to the surrounding environment also gave proof of the surface screening charge migration at surface. Thus, both domain and domain wall characteristics should be taken into account in ferroelectric application.
High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide
Photonic devices based on ferroelectric domain engineering in thin film lithium niobate are key components for both classical and quantum information processing. Periodic poling of ridge waveguide can avoid the selective etching effect of lithium niobate, however, the fabrication of high-quality ferroelectric domain is still a challenge. In this work, we optimized the applied electric field distribution, and rectangular inverted domain structure was obtained in the ridge waveguide which is beneficial for efficient nonlinear frequency conversions. Second harmonic confocal microscope, piezoresponse force microscopy, and chemical selective etching were used to characterize the inverted domain in the ridge waveguide. In addition, the performance of nonlinear frequency conversion of the periodically poled nano-waveguide was investigated through second harmonic generation, and the normalized conversion efficiency was measured to be 1,720 % W  cm , which is close to 60 % that of the theoretical value. The fabrication technique described in this work will pave the way for the development of high-efficiency, low-loss lithium niobate nonlinear photonic devices.
Tuning Local Conductance to Enable Demonstrator Ferroelectric Domain Wall Diodes and Logic Gates
Fundamentally, lithium niobate is a good electrical insulator. However, this can change dramatically when 180° domain walls are present, as they are often found to be strongly conducting. Conductivities depend on the inclination angles of walls with respect to the polarization axis and so, if these angles can be altered, then electrical conduction can be tuned, or toggled on and off. In ≈500 nm thick z‐cut ion‐sliced thin films, localized wall angle variations can be controlled by both the sense and magnitude of applied electrical bias. It is shown that this results in diode‐like behaviour, allowing half‐wave rectification at modest frequencies. Importantly, it is experimentally demonstrated that these domain wall diodes can be used to construct “AND” and inclusive “OR” logic gates, where “0” and “1” output states are clearly distinguishable. Extrapolation to more complex arrangements shows that output states can still be distinguished in two‐level cascade logic. Insights show that simple logic circuits can be realized by localized manipulation of domain wall conductivity. Our research complements that by Jie Sun et al. (Adv. Funct. Mater. 2207418 (2022)), where NOT, NOR, and NAND gates are realized by moving conducting domain walls to make or break electrical contacts. In thin film lithium niobate capacitors, localized bias‐induced changes in domain wall tilt (and associated changes in polar discontinuities) are found to induce strong diode‐like current–voltage characteristics. As a result, domain wall rectifiers, as well as “OR” and “AND” logic gates, are successfully demonstrated and modeled to be effective, even in two‐level cascade logic.
Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal
Ferroelectric domain walls (DWs) of perovskite oxide materials, which can be written and erased by an external electric field, offer the possibility to dynamically manipulate phonon scattering and thermal flux behavior. Different from previous ferroelectric materials, such as BaTiO3, PbTiO3, etc., with an immutable and low Curie temperature. The Curie temperature of perovskite oxide KTa1−xNbxO3 (KTN) crystal can be tuned by altering the Ta/Nb ratio. In this work, the ferroelectric KTa0.6Nb0.4O3 (KTN) single crystal is obtained by the Czochralski method. To understand the role of ferroelectric domains in thermal transport behavior, we perform a nonequilibrium molecular dynamics (NEMD) calculation on monodomain and 90° DWs of KTN at room temperature. The calculated thermal conductivity of monodomain KTN is 9.84 W/(m·k), consistent with experimental results of 8.96 W/(m·k), and distinctly decreased with the number of DWs indicating the outstanding performance of the thermal switch. We further evaluate the thermal boundary resistance (TBR) of KTN DWs. An interfacial thermal resistance value of 2.29 × 10−9 K·m2/W and a large thermal switch ratio of 4.76 was obtained for a single DW of KTN. Our study shows that the ferroelectric KTN can provide great potential for the application of thermal switch at room temperature and over a broad temperature range.
Competition between Ferroelectric and Ferroelastic Domain Wall Dynamics during Local Switching in Rhombohedral PMN-PT Single Crystals
The possibility to control the charge, type, and density of domain walls allows properties of ferroelectric materials to be selectively enhanced or reduced. In ferroelectric–ferroelastic materials, two types of domain walls are possible: pure ferroelectric and ferroelastic–ferroelectric. In this paper, we demonstrated a strategy to control the selective ferroelectric or ferroelastic domain wall formation in the (111) single-domain rhombohedral PMN-PT single crystals at the nanoscale by varying the relative humidity level in a scanning probe microscopy chamber. The solution of the corresponding coupled electro-mechanical boundary problem allows explaining observed competition between ferroelastic and ferroelectric domain growth. The reduction in the ferroelastic domain density during local switching at elevated humidity has been attributed to changes in the electric field spatial distribution and screening effectiveness. The established mechanism is important because it reveals a kinetic nature of the final domain patterns in multiaxial materials and thus provides a general pathway to create desirable domain structure in ferroelectric materials for applications in piezoelectric and optical devices.
Morphology Features of Ferroelectric Submicron Domains Written by E-Beam under a Metal Film in LiNbO3
The practical significance of ferroelectric domains and various domain boundaries has been growing steadily in recent years. In this work, various domain structures were written with an electron beam through a thin aluminum film on a −Z cut of bulk lithium niobate. The use of relatively low accelerating voltages (5 and 10 kV) and the grounding of the surface metallization made it possible to write periodic structures (1D and 2D) on large areas with domain sizes ≤1 μm. Selective domain etching and AFM in contact mode were used to observe various domain shapes obtained in the experiments. An unusual feature of the submicron-sized domains was needle-like vertices. Importantly, the vertices of the domains were deepened relative to the irradiated surface. It was found that the size and proximity of the irradiated regions to each other in the patterns used can significantly change the upper part of the domains. The experimental data were analyzed and discussed taking into account the computer simulation of the spatial field distribution of injected electron beam charges. The obtained results contribute to the development of controlled writing of submicron-sized domain structures using an electron beam.
Structure and Dynamics of Ferroelectric Domains in Polycrystalline Pb(Fe1/2Nb1/2)O3
A complex domain structure with variations in the morphology is observed at ambient temperature in monoclinic Pb(Fe1/2Nb1/2)O3. Using electron microscopy and piezoresponse force microscopy, it is possible to reveal micrometre-sized wedge, lamellar-like, and irregularly shaped domains. By increasing the temperature, the domain structure persists up to 80 °C, and then starts to disappear at around 100 °C due to the proximity of the ferroelectric–paraelectric phase transition, in agreement with macroscopic dielectric measurements. In order to understand to what degree domain switching can occur in the ceramic, the mobility of the domain walls was studied at ambient temperature. The in situ poling experiment performed using piezoresponse force microscopy resulted in an almost perfectly poled area, providing evidence that all types of domains can be easily switched. By poling half an area with 20 V and the other half with −20 V, two domains separated by a straight domain wall were created, indicating that Pb(Fe1/2Nb1/2)O3 is a promising material for domain-wall engineering.
Transparent ferroelectric crystals with ultrahigh piezoelectricity
Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound–optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications 1 – 7 . However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d 33 (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k 33 (about 94 per cent) and a large electro-optical coefficient γ 33 (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO 3 . We find that increasing the domain size leads to a higher d 33 value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity 8 – 10 . This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices. The use of alternating-current electric fields to control domain size in ferroelectric crystals affords excellent transparency, piezoelectricity and birefringence.
Organic enantiomeric high-Tc ferroelectrics
SignificanceFor a long time, homochirality in ferroelectrics has been studied rarely, although the first ferroelectric Rochelle salt (potassium sodium l-tartrate tetrahydrate) discovered in 1920 is a homochiral one and the optical activities of organic compounds far outweigh the ferroelectric ceramics. Here, we present a pair of enantiomorphic ferroelectrics, (R)-3-quinuclidinol and (S)-3-quinuclidinol, and the racemic mixture (Rac)-3-quinuclidinol. The two single-component homochiral organic molecules of different handedness form high-Curie temperature (Tc) ferroelectric crystals with similarly outstanding ferroelectricity. They are single-component high-Tc homochiral organic ferroelectrics. Our finding suggests the enormous benefits of homochirality in designing high-Tc ferroelectrics. The incorporation of homochirality will greatly expand the applications beyond the traditional fields of ferroelectrics. For nearly 100 y, homochiral ferroelectrics were basically multicomponent simple organic amine salts and metal coordination compounds. Single-component homochiral organic ferroelectric crystals with high-Curie temperature (Tc) phase transition were very rarely reported, although the first ferroelectric Rochelle salt discovered in 1920 is a homochiral metal coordination compound. Here, we report a pair of single-component organic enantiomorphic ferroelectrics, (R)-3-quinuclidinol and (S)-3-quinuclidinol, as well as the racemic mixture (Rac)-3-quinuclidinol. The homochiral (R)- and (S)-3-quinuclidinol crystallize in the enantiomorphic-polar point group 6 (C6) at room temperature, showing mirror-image relationships in vibrational circular dichroism spectra and crystal structure. Both enantiomers exhibit 622F6-type ferroelectric phase transition with as high as 400 K [above that of BaTiO3 (Tc = 381 K)], showing very similar ferroelectricity and related properties, including sharp step-like dielectric anomaly from 5 to 17, high saturation polarization (7 μC/cm2), low coercive field (15 kV/cm), and identical ferroelectric domains. Their racemic mixture (Rac)-3-quinuclidinol, however, adopts a centrosymmetric point group 2/m (C2h), undergoing a nonferroelectric high-temperature phase transition. This finding reveals the enormous benefits of homochirality in designing high-Tc ferroelectrics, and sheds light on exploring homochiral ferroelectrics with great application.