Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
493 result(s) for "Fertilizer use reduction"
Sort by:
Does Internet use reduce chemical fertilizer use? Evidence from rural households in China
Although numerous studies have explored various impacts of Internet use, few have investigated the linkage between Internet use and chemical fertilizer use in developing economies. This study examines the influences of Internet use and related promotion policy on chemical fertilizer use based on a nationwide dataset including China’s 7766 rural households. The baseline regression results show that Internet use reduced chemical fertilizer use significantly. The mechanism analysis unveils the mediation role of human capital; Internet use increased farmers’ human capital and then reduced chemical fertilizer use. In addition, the difference-in-difference method is employed to examine the effects of Internet promotion policy and the findings reveal that the promotion policy could help reduce farmers’ use of chemical fertilizer. Finally, both propensity score matching-DID model and a two-stage instrumental variable model are used to address potential endogeneity issues associated with Internet use, and results indicate that the empirical results are robust. Our findings suggest that improving the availability of broadband access in a rural area, promoting Internet-related training and education, and more government’s investment in rural ICTs infrastructure can contribute to the reduction of chemical fertilizer use.
Spatiotemporal Differentiation of Fertilizer and Pesticide Use and Its Driving Factors in the Yangtze River Delta of China: An Analysis at the County Scale
Reducing fertilizer and pesticide use is a crucial path for the green transformation of agricultural production, which has garnered sustained attention in research on sustainable agricultural development. Based on the theoretical analysis, this article analyzes the spatiotemporal evolution characteristics of fertilizer and pesticide usage intensity (FUI and PUI) in the Yangtze River Delta (YRD) over the past 20 years and uses a Two-Way Fixed Effects Model to test their impacts and mechanisms. Findings show that agricultural development in the YRD shows a pattern of specialization and intensification with a significant north–south divide, with zero growth and reduction in fertilizer and pesticide use across the region from 2010 to 2015, but the current FUI and PUI are still nearly three and five times higher than the global average. Over the past 20 years, the FUI is high in the north and low in the south, high in the plains and low in mountainous-hilly areas, and high in suburban areas and low in remote counties. Adversely, the PUI is high in the south and low in the north, high in mountainous-hilly areas and low in plains, and high in suburban areas and low in remote counties. The FUI and PUI of characteristic agricultural areas of fruit, tea, and forestry in southern Anhui and southwestern Zhejiang, as well as the agroecological and facility agriculture clusters in southern Jiangsu and the suburbs of Shanghai, have approached the peak and successfully moved into the new green development stage earlier compared to other areas. In contrast, the grain and oil production plains areas along the Yangtze River, the coast, in northern Anhui, and in northern Jiangsu are relatively lagging behind. The combination of soil, water, light, and heat resource conditions and modes of agriculture production shape the absolute figures of FUI and PUI, and factors such as the level of local economic development and public fiscal expenditure significantly influence the trajectories of spatiotemporal differentiation in the progress of reducing fertilizer and pesticide in the YRD.
The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis
Soil organic carbon (SOC), total nitrogen (TN), and their ratio (C:N) play important roles in preserving soil fertility, and their values are closely related to fertilizer use. However, the overall trend and magnitude of changes in SOC, TN and C:N in response to chemical nitrogen fertilizers reduction remain inconclusive. Here, the meta-analysis conducted comparisons at 48 sites covering various cropping system, soil type, and climatic regions of China to investigate the responses of SOC, TN and C:N to chemical nitrogen fertilizers reduction. The results showed that chemical nitrogen fertilizers reduction decreased SOC by 2.76 ± 0.3% and TN by 4.19 ± 0.8%, and increased the C:N by 6.11 ± 0.9% across all the database. Specifically, the reduction of chemical nitrogen without adding organic nitrogen fertilizers would reduce SOC and TN by 3.83% and 11.46% respectively, while they increased SOC and TN by 4.92% and 8.33% respectively with organic fertilizers supplement, suggesting that organic fertilizers could cover the loss of SOC, TN induced by chemical nitrogen fertilizers reduction. Medium magnitude (20–30%) of chemical nitrogen fertilizers reduction enhanced SOC by 6.9%, while high magnitude (≧30%) and total (100%) of chemical nitrogen fertilizers reduction significantly decreased SOC by 3.10% and 7.26% respectively. Moreover, SOC showed a negative response to nitrogen fertilizers reduction at short-term duration (1–2 years), while the results converted under medium-long-termThis system analysis fills the gap on the effects of fertilizer reduction on soil organic carbon and nitrogen at the national scale, and provides technical foundation for the action of reducing fertilizer application while increase efficiency.
Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review
Nitrogen is an essential nutrient required in large quantities for the proper growth and development of plants. Nitrogen is the most limiting macronutrient for crop production in most of the world’s agricultural areas. The dynamic nature of nitrogen and its tendency to lose soil and environment systems create a unique and challenging environment for its proper management. Exploiting genetic diversity, developing nutrient efficient novel varieties with better agronomy and crop management practices combined with improved crop genetics have been significant factors behind increased crop production. In this review, we highlight the various biochemical, genetic factors and the regulatory mechanisms controlling the plant nitrogen economy necessary for reducing fertilizer cost and improving nitrogen use efficiency while maintaining an acceptable grain yield.
Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield
Chemical fertilizer has been excessively used for high yield of citrus around the world, especially in China; meanwhile, it deteriorates the citrus orchard soil environment. To resolve the conflict, the use of organic fertilizer provides a promising solution. However, the data about organic fertilizer used in citrus orchard is rarely available. Here, four treatments including CK (no fertilizer), CF (chemical fertilizer), OF + CF (chemical fertilizer reduction combined with organic fertilizer; application of N, P2O5, K2O fertilizer and organic fertilizer is 0.564, 0.236, 0.336 and 10 kg/plant), and BF + CF (chemical fertilizer reduction combined with bioorganic fertilizer; application of N, P2O5, K2O fertilizer and bioorganic fertilizer is 0.508, 0.320, 0.310 and 10 kg/plant) were performed in a ‘Ponkan’ (Citrus reticulata Blanco) orchard to evaluate the effect of organic fertilizer on citrus yield, growth, soil properties etc. when nutrients of fertilizer of each treatment were equal except CK. The data obtained in 2019 and 2020 showed that both OF + CF and BF + CF were beneficial to improve soil fertility (soil physicochemical and microbe properties) and citrus growth physiology (growth, nutrient and photosynthesis), alleviate NO3−-N leaching, and promote yields. Comprehensive evaluation indicated that BF + CF was more effective than OF + CF. Together, organic fertilizer has the potential to substitute partial chemical fertilizer with improvement in soil properties, growth physiology, and yield of citrus.
Global meta-analysis of the relationship between soil organic matter and crop yields
Resilient, productive soils are necessary to sustainably intensify agriculture to increase yields while minimizing environmental harm. To conserve and regenerate productive soils, the need to maintain and build soil organic matter (SOM) has received considerable attention. Although SOM is considered key to soil health, its relationship with yield is contested because of local-scale differences in soils, climate, and farming systems. There is a need to quantify this relationship to set a general framework for how soil management could potentially contribute to the goals of sustainable intensification. We developed a quantitative model exploring how SOM relates to crop yield potential of maize and wheat in light of co-varying factors of management, soil type, and climate. We found that yields of these two crops are on average greater with higher concentrations of SOC (soil organic carbon). However, yield increases level off at ∼2 % SOC. Nevertheless, approximately two-thirds of the world's cultivated maize and wheat lands currently have SOC contents of less than 2 %. Using this regression relationship developed from published empirical data, we then estimated how an increase in SOC concentrations up to regionally specific targets could potentially help reduce reliance on nitrogen (N) fertilizer and help close global yield gaps. Potential N fertilizer reductions associated with increasing SOC amount to 7 % and 5 % of global N fertilizer inputs across maize and wheat fields, respectively. Potential yield increases of 10±11 % (mean ± SD) for maize and 23±37 % for wheat amount to 32 % of the projected yield gap for maize and 60 % of that for wheat. Our analysis provides a global-level prediction for relating SOC to crop yields. Further work employing similar approaches to regional and local data, coupled with experimental work to disentangle causative effects of SOC on yield and vice versa, is needed to provide practical prescriptions to incentivize soil management for sustainable intensification.
Biostimulants on Crops: Their Impact under Abiotic Stress Conditions
Biostimulants are agronomic tools that have been gaining importance in the reduction of fertilizer applications. They can improve the yield of cropping systems or preventing crop yield losses under abiotic stresses. Biostimulants can be composed of organic and inorganic materials and most of the components are still unknown. The characterization of the molecular mechanism of action of biostimulants can be obtained using the omics approach, which includes the determination of transcriptomic, proteomic, and metabolomic changes in treated plants. This review reports an overview of the biostimulants, taking stock on the recent molecular studies that are contributing to clarify their action mechanisms. The omics studies can provide an overall evaluation of a crop’s response, connecting the molecular changes with the physiological pathways activated and the performance with or without stress conditions. The multiple responses of plants treated with biostimulants must be correlated with the phenotype changes. In this context, it is also crucial to design an adequate experimental plan and statistical data analysis, in order to find robust correlations between biostimulant treatments and crop performance.
Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes
The development of cultivars with an improved nitrogen use efficiency (NUE) together with the application of plant growth-promoting bacteria is considered one of the main strategies for reduction of fertilizers use. In this sense, this study: i) evaluated the effect of Azospirillum brasilense on the initial development of maize genotypes; ii) investigated the influence of A. brasilense inoculation on NUE under nitrogen deficit; and iii) sought for more NUE genotypes with higher responsiveness to A. brasilense inoculation. Twenty-seven maize genotypes were evaluated in three independent experiments. The first evaluated the initial development of maize genotypes with and without A. brasilense (strain Ab-V5) inoculation of seeds on germination paper in a growth chamber. The second and third experiments were carried out in a greenhouse using Leonard pots and pots with substrate, respectively, and the genotypes were evaluated at high nitrogen, low nitrogen and low nitrogen plus A. brasilense Ab-V5 inoculation. The inoculation of seeds with A. brasilense Ab-V5 intensified plant growth, improved biochemical traits and raised NUE under nitrogen deficit. The inoculation of seeds with A. brasilense can be considered an economically viable and environmentally sustainable strategy for maize cultivation.
The impact of the combined application of biochar and organic fertilizer on the growth and nutrient distribution in wheat under reduced chemical fertilizer conditions
Organic fertilizer can help replenish fertility in cropland and reduce the use of chemical fertilizers, with biochar is an important soil conditioner. Under the premise of chemical fertilizer reduction, whether the application of biochar and organic fertilizer affect the yield and nutrient absorption and utilization of wheat? In this experiment, 7 treatments were set up in a randomized field trial with each treatment repeated three times: (1) CK1: no fertilizer; (2) CK2: 100% inorganic fertilizer; (3) T1: recommended amount of biochar with 100% inorganic fertilizer; (4) T2: recommended amount of organic fertilizer with 80% inorganic fertilizer; (5) T3: recommended amount of organic fertilizer and biochar with 80% inorganic fertilizer; (6) T4: recommended amount of organic fertilizer with 60% inorganic fertilizer; and (7) T5: recommended amount of organic fertilizer and biochar with 60% inorganic fertilizer. The results of this study showed that biochar combined with organic fertilizer can reduce the amount of chemical fertilizer by 40%~20% while ensuring wheat yield. Combining the input and output, 80% inorganic fertilizer with biochar and organic fertilizer (T3) was recommended. Under this fertilization scheme, the wheat yield was 37.32% higher than that of 100% chemical fertilizer (CK2), and the photosynthetic capacity was 54.97% higher at seedling stage. At the tillering stage, the root nitrogen content of T3 was significantly higher than that of T2, T4 and T5, which was 21.44%, 54.63% and 60.16%, respectively. The nitrogen content of T3 was significantly higher than that of other treatments at maturity, and the nitrogen content of T3 was 4.38% higher than that of CK2. At heading stage, the nitrogen allocated to T3 leaves was 4.71% higher than CK2. Overall, the results of this study showed that the combination of biochar and organic fertilizer could effectively reduce the application of chemical fertilizer. The recommended fertilizer regimen was 80% inorganic fertilizer with biochar and organic fertilizer, under this scheme, wheat had stronger photosynthetic capacity and better nutrient absorption and distribution mechanism.
Study on N application and N reduction potential of farmland in China
The frequent occurrence of extreme weather in recent years poses a significant threat to food production. Ensuring food production and rationalizing the use of agricultural resources require addressing the problem of the improper application of chemical fertilizers. Several effective measures have been implemented in China to reduce agricultural non-point source pollution. Among them, the reduction of excessive nitrogen fertilizer application proves to be the most effective approach in controlling surface pollution from cultivation. Currently, it is crucial to clarify and quantify crop nutrient fertilizer requirements while evaluating the potential for reducing nitrogen fertilizer usage in China. Nitrogen requirements for major crops grown in China were assessed based on the theory of crop nutrient balance, assuming constant grain production as a guarantee. In this paper, we analyze the potential for nitrogen reduction through short-term, medium-term, and long-term scenario predictions. The results show that in the next 3 years, China has a reduction potential of 34.98%, but this potential is not sustainable. Over the next 10 years, there is a reduction potential of 15.04%, with most provinces experiencing a balanced state of soil nitrogen cycling. Hainan, Beijing, Shaanxi, and Fujian have higher reduction potential, with possible reductions of 69.95%, 64.14%, 60.72%, and 54.10%, respectively. However, there are still provinces in China where nitrogen fertilizer is insufficient, leading to soil nitrogen consumption. Specifically, Heilongjiang, Jiangxi, and Shandong Provinces need to increase their nitrogen fertilizer applications by 87.00%, 35.97%, and 8.31%, respectively. The long-term scenario analysis over the next 30 years shows a reduction potential of 40.96%. Among the regions analyzed, Hainan, Beijing, Shaanxi, Fujian, and Ningxia have higher nitrogen fertilizer reduction potentials, with values of 78.97%, 78.48%, 74.25%, 67.87%, and 67.72%, respectively. However, Heilongjiang Province still needs to increase nitrogen fertilizer application by 44.20% to address soil nitrogen depletion. Conversely, Tibet and Qinghai, with high organic fertilizer yields, lower chemical fertilizer usage, and low nitrogen loss coefficients, are well-suited for organic agriculture development. For areas with high organic fertilizers usage and a risk of fertilizer loss, we recommend implementing the organic-inorganic mixed fertilization planting mode.