Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Fibrillar Collagens - isolation "
Sort by:
From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine
Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.
Biocompatibility of a Marine Collagen-Based Scaffold In Vitro and In Vivo
Scaffold material is essential in providing mechanical support to tissue, allowing stem cells to improve their function in the healing and repair of trauma sites and tissue regeneration. The scaffold aids cell organization in the damaged tissue. It serves and allows bio mimicking the mechanical and biological properties of the target tissue and facilitates cell proliferation and differentiation at the regeneration site. In this study, the developed and assayed bio-composite made of unique collagen fibers and alginate hydrogel supports the function of cells around the implanted material. We used an in vivo rat model to study the scaffold effects when transplanted subcutaneously and as an augment for tendon repair. Animals’ well-being was measured by their weight and daily activity post scaffold transplantation during their recovery. At the end of the experiment, the bio-composite was histologically examined, and the surrounding tissues around the implant were evaluated for inflammation reaction and scarring tissue. In the histology, the formation of granulation tissue and fibroblasts that were part of the inclusion process of the implanted material were noted. At the transplanted sites, inflammatory cells, such as plasma cells, macrophages, and giant cells, were also observed as expected at this time point post transplantation. This study demonstrated not only the collagen-alginate device biocompatibility, with no cytotoxic effects on the analyzed rats, but also that the 3D structure enables cell migration and new blood vessel formation needed for tissue repair. Overall, the results of the current study proved for the first time that the implantable scaffold for long-term confirms the well-being of these rats and is correspondence to biocompatibility ISO standards and can be further developed for medical devices application.
Non-disruptive collagen characterization in clinical histopathology using cross-modality image synthesis
The importance of fibrillar collagen topology and organization in disease progression and prognostication in different types of cancer has been characterized extensively in many research studies. These explorations have either used specialized imaging approaches, such as specific stains (e.g., picrosirius red), or advanced and costly imaging modalities (e.g., second harmonic generation imaging (SHG)) that are not currently in the clinical workflow. To facilitate the analysis of stromal biomarkers in clinical workflows, it would be ideal to have technical approaches that can characterize fibrillar collagen on standard H&E stained slides produced during routine diagnostic work. Here, we present a machine learning-based stromal collagen image synthesis algorithm that can be incorporated into existing H&E-based histopathology workflow. Specifically, this solution applies a convolutional neural network (CNN) directly onto clinically standard H&E bright field images to extract information about collagen fiber arrangement and alignment, without requiring additional specialized imaging stains, systems or equipment. Keikhosravi et al. utilises convolutional neural network (CNN) on standard H&E stained histology images to extract information about collagen fiber arrangement and alignment. Collagen images synthesized from CNN are very similar to true collagen maps produced via second harmonic generation (SHG) and other approaches.
Development of 3D printed fibrillar collagen scaffold for tissue engineering
Collagen is widely used in tissue engineering because it can be extracted in large quantities, and has excellent biocompatibility, good biodegradability, and weak antigenicity. In the present study, we isolated printable collagen from bovine Achilles tendon and examined the purity of the isolated collagen using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The bands obtained corresponded to α1, α2 and β chains with little contamination from other small proteins. Furthermore, rheological measurements of collagen dispersions (60 mg per ml of PBS) at pH 7 revealed values of viscosity of 35.62 ± 1.42 Pa s at shear rate of 10 s − 1 and a shear thinning behavior. Collagen gels and solutions can be used for building scaffolds by three-dimensional (3D) printing. After designing and fabricating a low-cost 3D printer we assayed the collagen printing and obtaining 3D printed scaffolds of collagen at pH 7. The porosity of the scaffold was 90.22% ± 0.88% and the swelling ratio was 1437% ± 146%. The microstructure of the scaffolds was studied using scanning electron microscopy, and a porous mesh of fibrillar collagen was observed. In addition, the 3D printed collagen scaffold was not cytotoxic with cell viability higher than 70% using Vero and NIH 3 T3 cells. In vitro evaluation using both cells lines demonstrated that the collagen scaffolds had the ability to support cell attachment and proliferation. Also a fibrillar collagen mesh was observed after two weeks of culture at 37 °C. Overall, these results are promising since they show the capability of the presented protocol to obtain printable fibrillar collagen at pH 7 and the potential of the printing technique for building low-cost biocompatible 3D plotted structures which maintained the fibrillar collagen structure after incubation in culture media without using additional strategies as crosslinking.
Bioactivity-Guided Isolation of Antistroke Compounds from Gymnadenia conopsea (L.) R. Br
A bioactivity-guided separation strategy was used to identify novel antistroke compounds from Gymnadenia conopsea (L.) R. Br., a medicinal plant. As a result, 4 undescribed compounds (1–2, 13, and 17) and 13 known compounds, including 1 new natural product (3), were isolated from G. conopsea. The structures of these compounds were elucidated through comprehensive spectroscopic techniques, such as 1D/2D nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HRESIMS), and quantum chemical calculations. An oxygen–glucose deprivation/reoxygenation (OGD/R)-injured rat pheochromocytoma (PC12) cell model was used to evaluate the antistroke effects of the isolates. Compounds 1–2, 10–11, 13–15, and 17 provided varying degrees of protection against OGD/R injury in the PC12 cells at concentrations of 12.5, 25, and 50 µM. Among the tested compounds, compound 17 demonstrated the most potent neuroprotective effect, which was equivalent to that of the positive control drug (edaravone). Then, transcriptomic and bioinformatics analyses were conducted to reveal the regulatory effect of compound 17 on gene expression. In addition, quantitative real-time PCR (qPCR) was performed to verify the results of the transcriptomic and bioinformatics analyses. These results suggest that the in vitro antistroke effect of compound 17 may be associated with the regulation of the Col27a1 gene. Thus, compound 17 is a promising candidate for the development of novel antistroke drugs derived from natural products, and this topic should be further studied.
CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV
We raised monoclonal antibodies against senile plaque (SP) amyloid and obtained a clone 9D2, which labeled amyloid fibrils in SPs and reacted with ∼50/100 kDa polypeptides in Alzheimer's disease (AD) brains. We purified the 9D2 antigens and cloned a cDNA encoding its precursor, which was a novel type II transmembrane protein specifically expressed in neurons. This precursor harbored three collagen‐like Gly–X–Y repeat motifs and was partially homologous to collagen type XIII. Thus, we named the 9D2 antigen as CLAC (collagen‐like Alzheimer amyloid plaque component), and its precursor as CLAC‐P/collagen type XXV. The extracellular domain of CLAC‐P/collagen type XXV was secreted by furin convertase, and the N‐terminus of CLAC deposited in AD brains was pyroglutamate modified. Both secreted and membrane‐tethered forms of CLAC‐P/collagen type XXV specifically bound to fibrillized Aβ, implicating these proteins in β‐amyloidogenesis and neuronal degeneration in AD.
Serum Anti-BPAG1 Auto-Antibody Is a Novel Marker for Human Melanoma
Malignant melanoma is one of the most aggressive types of tumor. Because malignant melanoma is difficult to treat once it has metastasized, early detection and treatment are essential. The search for reliable biomarkers of early-stage melanoma, therefore, has received much attention. By using a novel method of screening tumor antigens and their auto-antibodies, we identified bullous pemphigoid antigen 1 (BPAG1) as a melanoma antigen recognized by its auto-antibody. BPAG1 is an auto-antigen in the skin disease bullous pemphigoid (BP) and anti-BPAG1 auto-antibodies are detectable in sera from BP patients and are used for BP diagnosis. However, BPAG1 has been viewed as predominantly a keratinocyte-associated protein and a relationship between BPAG1 expression and melanoma has not been previously reported. In the present study, we show that bpag1 is expressed in the mouse F10 melanoma cell line in vitro and F10 melanoma tumors in vivo and that BPAG1 is expressed in human melanoma cell lines (A375 and G361) and normal human melanocytes. Moreover, the levels of anti-BPAG1 auto-antibodies in the sera of melanoma patients were significantly higher than in the sera of healthy volunteers (p<0.01). Furthermore, anti-BPAG1 auto-antibodies were detected in melanoma patients at both early and advanced stages of disease. Here, we report anti-BPAG1 auto-antibodies as a promising marker for the diagnosis of melanoma, and we discuss the significance of the detection of such auto-antibodies in cancer biology and patients.
Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues
Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.
Softenin, a Novel Protein That Softens the Connective Tissue of Sea Cucumbers through Inhibiting Interaction between Collagen Fibrils
The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT) dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross-bridges between extracellular materials.
Modulation of Collagen Fibrillogenesis by Dentinal Proteoglycans
Studies have identified different pools of proteoglycan (PG) species present within the unmineralized matrix of the predentine, the transitional phase at the predentine-dentine interface and the mineralized dentine. These PGs alter with respect to the chemical nature of their glycosaminoglycan (GAG) chains and as a result of extracellular processing of the macromolecule in the matrix. The present study has examined the influence of the PGs isolated from these phases and the influence of the attached GAG chains, upon their ability to control collagen fibrillogenesis. PGs isolated from the three phases were characterized and determined to contain a mixture of decorin and biglycan. Results have indicated that predentine PGs, which are substituted with a higher proportion of dermatan sulfate, significantly delayed fibril formation while ultimately promoting the formation of thicker fibrils. Removal of the GAG chains further delayed fibrillogenesis, leading to the formation of thinner fibrils, compared with the collagen-only control. PGs isolated from predentine-dentine, which contained a higher proportion of chondroitin sulfate, also significantly delayed fibrillogenesis, resulting in thicker collagen fibrils. GAG chains attached to the predentine-dentine interface PGs played a role in the timing of fibrillogenesis with fibril formation initiated at the same time as the collagen control, but yielding thicker fibrils. Dentine PGs significantly inhibited fibrillogenesis and fibril thickness over concentrations of 50-25 microg/mL protein. In conclusion, the PGs isolated from the distinct phases have indicated differing roles in the orchestrated organization of the extracellular matrix during dentinogenesis, with roles for both the core protein and attached GAG chains indicated.