Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
40,967 result(s) for "Fibroblast growth factors"
Sort by:
Instability restricts signaling of multiple fibroblast growth factors
Fibroblast growth factors (FGFs) deliver extracellular signals that govern many developmental and regenerative processes, but the mechanisms regulating FGF signaling remain incompletely understood. Here, we explored the relationship between intrinsic stability of FGF proteins and their biological activity for all 18 members of the FGF family. We report that FGF1, FGF3, FGF4, FGF6, FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and FGF22 exist as unstable proteins, which are rapidly degraded in cell cultivation media. Biological activity of FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, and FGF20 is limited by their instability, manifesting as failure to activate FGF receptor signal transduction over long periods of time, and influence specific cell behavior in vitro and in vivo. Stabilization via exogenous heparin binding, introduction of stabilizing mutations or lowering the cell cultivation temperature rescues signaling of unstable FGFs. Thus, the intrinsic ligand instability is an important elementary level of regulation in the FGF signaling system.
Exploring mechanisms of FGF signalling through the lens of structural biology
Key Points Fibroblast growth factor (FGF) signalling controls a myriad of processes in embryonic development and in tissue homeostasis and metabolism in the adult. Recent structural studies have provided a glimpse of the complexity of molecular control that is in place to fine-tune this signalling system to enable it to produce specific signalling outputs in diverse biological contexts. The interaction of FGFs with heparan sulphate glycosaminoglycan chains of heparan sulphate proteoglycans in the pericellular and extracellular matrix defines their mode of action, that is, whether an FGF acts in a paracrine or endocrine fashion. It also determines the shape of gradient formed by a paracrine FGF ligand in the extracellular matrix, which in turn is a determinant of the biological response to that ligand. In addition to mechanisms common to all FGFs, such as the interaction with heparan sulphate, the biological activity of individual ligands or ligand subfamilies is regulated by mechanisms unique to these ligands: amino-terminal alternative splicing controls the activity of FGF8 subfamily ligands; homodimerization autoinhibits the activity of FGF9 subfamily ligands; and site-specific proteolytic cleavage inactivates the phosphaturic hormone FGF23. Alternative splicing in the extracellular immunoglobulin-like domain 3 (D3) of FGF receptor 1 (FGFR1), FGFR2 and FGFR3 primarily determines the ligand-binding specificity of these receptors. This splicing event is fundamental to the establishment of directional paracrine FGF signalling between the epithelium and the mesenchyme, which underlies the coordinated cellular processes that govern organ development. Klotho co-receptors convert FGFRs into specific receptors for endocrine FGFs by a dual mechanism; these co-receptors not only enhance the binding affinity of FGFRs for endocrine FGFs but concomitantly suppress the binding of paracrine FGFs to FGFRs. The finding that heparan sulphate is dispensable for signalling by endocrine FGFs implies that Klotho co-receptors also promote FGFR dimerization upon endocrine FGF binding, which is required for FGFR activation. The structural findings suggest that there may be no functional redundancy among FGF ligands, and genetic data support this conclusion. Hence, future studies should concentrate on identifying novel ligand-specific functions of FGF signalling. Structural data has provided insight into the molecular mechanisms that modulate fibroblast growth factor (FGF) signalling to generate distinct biological outputs in development, tissue homeostasis and metabolism. Mechanisms include alternative splicing of ligand and receptor, homodimerization and site-specific proteolytic cleavage of ligand, and interaction of ligand and receptor with heparan sulphate and Klotho co-receptors. Fibroblast growth factors (FGFs) mediate a broad range of functions in both the developing and adult organism. The accumulated wealth of structural information on the FGF signalling pathway has begun to unveil the underlying molecular mechanisms that modulate this system to generate a myriad of distinct biological outputs in development, tissue homeostasis and metabolism. At the ligand and receptor level, these mechanisms include alternative splicing of the ligand (FGF8 subfamily) and the receptor (FGFR1–FGFR3), ligand homodimerization (FGF9 subfamily), site-specific proteolytic cleavage of the ligand (FGF23), and interaction of the ligand and the receptor with heparan sulphate cofactor and Klotho co-receptor.
Structural basis for FGF hormone signalling
α/βKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23) 1 , 2 and their cognate cell-surface FGF receptors (FGFR1–4) thereby stabilizing the endocrine FGF–FGFR complex 3 – 6 . However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities 6 . To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23–FGFR–αKlotho–HS quaternary complexes featuring the ‘c’ splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23–FGFR–αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling 2 as therapeutics for human metabolic diseases and cancer. This study reveals how Klotho and heparan sulfate glycosaminoglycan coreceptors enable FGF hormones to induce asymmetric 1:2 FGF–FGFR dimerization mandatory for FGFR kinase activation and hence signalling.
Purification of recombinant human fibroblast growth factor 13 in E. coli and its molecular mechanism of mitogenesis
Fibroblast growth factor (FGF) 13, a member of the FGF11 subfamily, is a kind of intracrine protein similar to other family members including FGF11, FGF12, and FGF14. Unlike classical FGF, FGF13 exerts its bioactivities independent of fibroblast growth factor receptors (FGFRs). However, the effect of exogenous administration of FGF13 still remains further investigated. In the present study, we established an Escherichia coli expression system for the large-scale production of FGF13 and then obtained two isoform proteins including recombinant human FGF13A (rhFGF13A) and rhFGF13B with a purity greater than 90% by column chromatography, respectively. Otherwise, soluble analysis indicated that both rhFGF13A and rhFGF13B expressed in E. coli BL21 (DE3) pLysS were soluble. Furthermore, cellular-based experiments demonstrated that rhFGF13A, rather than rhFGF13B, could promote the proliferation of NIH3T3 cells in the presence of heparin. Mechanistically, the mitogenic effect of FGF13 was mediated by activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), but not p38. Moreover, blockage of FGFRs also significantly attenuated the mitogenic effects of rhFGF13A, implying that FGFRs are still related to FGF13. Thus, our research shows that exogenous FGF13 can act as secreted FGF to participate in cell signal transmission and heparin is still required as an ancillary cofactor for the mitogenic effects of FGF13, which may help people to discover more potential functions of FGF13 in cell life activities.
FGF-dependent metabolic control of vascular development
Fibroblast growth factor receptor (FGFR) signalling is a crucial regulator of endothelial metabolism and vascular development. The role of fibroblasts in vascular development The development of blood vessel networks involves the growth and spread of endothelial cells. Recent studies suggest that these processes are affected by changes in cellular metabolism, but the role of fibroblast growth factors (FGFs) is poorly understood. Michael Simons and colleagues identify FGF receptor signalling as a crucial regulator of vascular development andendothelial cell proliferation in adult tissues. They explore the molecular basis of this effect and find that FGFs control endothelial cell glycolysis through MYC-dependent regulation of hexokinase 2 expression. The authors suggest that understanding this pathway may guide investigations into targeted therapies for diseases associated with irregular vascular growth. Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes 1 . Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism 2 , 3 , little is understood about the role of fibroblast growth factors (FGFs) in this context 4 . Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1 / Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.
Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma
Erdafitinib, an inhibitor of fibroblast growth factor receptor, was tested in previously treated patients with advanced urothelial cancer with FGFR alterations. The objective response rate was 40%, with treatment-related adverse events of grade 3 or higher reported in nearly half the patients.
Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors
The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. Significance Inhibitors of the FGF receptors (FGFRs) are currently under clinical investigation for the treatment of various cancers. All currently approved kinase inhibitors eventually are rendered useless by the emergence of drug-resistant tumors. We used structure-based drug design to develop the first, to our knowledge, selective, next-generation covalent FGFR inhibitors that can overcome the most common form of kinase inhibitor resistance, the mutation of the so-called “gatekeeper” residue located in the ATP-binding pocket. We also describe a novel kinase inhibitor design strategy that uses a single electrophile to target covalently cysteines that are located in different positions within the ATP-binding pocket. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance.
Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study
Fibroblast growth factor receptor (FGFR) 2 gene alterations are involved in the pathogenesis of cholangiocarcinoma. Pemigatinib is a selective, potent, oral inhibitor of FGFR1, 2, and 3. This study evaluated the safety and antitumour activity of pemigatinib in patients with previously treated, locally advanced or metastatic cholangiocarcinoma with and without FGFR2 fusions or rearrangements. In this multicentre, open-label, single-arm, multicohort, phase 2 study (FIGHT-202), patients aged 18 years or older with disease progression following at least one previous treatment and an Eastern Cooperative Oncology Group (ECOG) performance status of 0–2 recruited from 146 academic or community-based sites in the USA, Europe, the Middle East, and Asia were assigned to one of three cohorts: patients with FGFR2 fusions or rearrangements, patients with other FGF/FGFR alterations, or patients with no FGF/FGFR alterations. All enrolled patients received a starting dose of 13·5 mg oral pemigatinib once daily (21-day cycle; 2 weeks on, 1 week off) until disease progression, unacceptable toxicity, withdrawal of consent, or physician decision. The primary endpoint was the proportion of patients who achieved an objective response among those with FGFR2 fusions or rearrangements, assessed centrally in all patients who received at least one dose of pemigatinib. This study is registered with ClinicalTrials.gov, NCT02924376, and enrolment is completed. Between Jan 17, 2017, and March 22, 2019, 146 patients were enrolled: 107 with FGFR2 fusions or rearrangements, 20 with other FGF/FGFR alterations, 18 with no FGF/FGFR alterations, and one with an undetermined FGF/FGFR alteration. The median follow-up was 17·8 months (IQR 11·6–21·3). 38 (35·5% [95% CI 26·5–45·4]) patients with FGFR2 fusions or rearrangements achieved an objective response (three complete responses and 35 partial responses). Overall, hyperphosphataemia was the most common all-grade adverse event irrespective of cause (88 [60%] of 146 patients). 93 (64%) patients had a grade 3 or worse adverse event (irrespective of cause); the most frequent were hypophosphataemia (18 [12%]), arthralgia (nine [6%]), stomatitis (eight [5%]), hyponatraemia (eight [5%]), abdominal pain (seven [5%]), and fatigue (seven [5%]). 65 (45%) patients had serious adverse events; the most frequent were abdominal pain (seven [5%]), pyrexia (seven [5%]), cholangitis (five [3%]), and pleural effusion (five [3%]). Overall, 71 (49%) patients died during the study, most frequently because of disease progression (61 [42%]); no deaths were deemed to be treatment related. These data support the therapeutic potential of pemigatinib in previously treated patients with cholangiocarcinoma who have FGFR2 fusions or rearrangements. Incyte Corporation.
Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation
Fibroblast growth factor (FGF) 23 produced by bone is a hormone that decreases serum phosphate (Pi). Reflecting its central role in Pi control, serum FGF23 is tightly regulated by serum Pi alterations. FGF23 levels are regulated by the transcriptional event and post-translational cleavage into inactive fragments before its secretion. For the latter, O-glycosylation of FGF23 by GALNT3 gene product prevents the cleavage, leading to an increase in serum FGF23. However, the molecular basis of Pi sensing in the regulation of serum FGF23 remains elusive. In this study, we showed that high Pi diet enhanced the skeletal expression of Galnt3, but not Fgf23, with expected increases in serum FGF23 and Pi in mice. Galnt3 induction by high Pi was further observed in osteoblastic UMR 106 cells, and this wasmediated by activation of the extracellular signal-regulated kinase (ERK) pathway. Through proteomic searches for the upstream sensor for high Pi, we identified one subtype of the FGF receptor (FGFR1c), which was phosphorylated by high Pi in the absence of FGFs. The mode of unliganded FGFR activation by high Pi appeared different from that of FGFR bound to a canonical FGFR ligand (FGF2) when phosphorylation of the FGFR substrate 2α and ERK was monitored. Finally, we showed that an FGFR inhibitor and conditional deletion of Fgfr1 in osteoblasts/osteocytes abrogated high Pi diet-induced increases in serum FGF23 and femoral Galnt3 expression in mice. Thus, these findings uncover an unrecognized facet of unliganded FGFR function and illustrate a Pi-sensing pathway involved in regulation of FGF23 production.
Fibroblast growth factor signalling: from development to cancer
Key Points Fibroblast growth factors (FGFs) and their receptors (FGFRs) drive crucial developmental signalling pathways, which are responsible for many functions, including cell proliferation, survival and migration. As such, they are susceptible to hijack by cancer cells and have been shown to have oncogenic roles in many cancers. Conversely, FGFR signalling can also have tumour suppressive roles, through driving differentiation, regulating other oncogenic pathways, protecting cells from damage or perhaps by mediating immune surveillance. The specific cellular context in which FGF signalling occurs is clearly important for determining whether oncogenic or tumour protective outcomes are evoked, and understanding more about context-specific FGF signalling is a key area of research. There are several types of genetic evidence that support an oncogenic function for FGFRs: identification of gene amplifications, activating mutations, chromosomal translocations, single nucleotide polymorphisms and aberrant splicing at the post-transcriptional level. Expression of FGFs can also be affected by gene amplification. There is now evidence from multiple cancer types to implicate FGF signalling in several oncogenic behaviours, including proliferation, survival, migration, invasion and angiogenesis. Therapeutic targeting of FGFs and their receptors is a major area of drug development research. Most agents are small-molecule tyrosine kinase inhibitors, but blocking antibodies and ligand-trap approaches are also being developed. Fibroblast growth factors (FGFs) and their receptors have been shown to drive tumorigenesis and tumour progression. However, FGF signalling can also be tumour suppressive, and understanding the mechanisms that underlie these context-specific effects will be important to rationally target FGF signalling for therapeutic benefit. Fibroblast growth factors (FGFs) and their receptors control a wide range of biological functions, regulating cellular proliferation, survival, migration and differentiation. Although targeting FGF signalling as a cancer therapeutic target has lagged behind that of other receptor tyrosine kinases, there is now substantial evidence for the importance of FGF signalling in the pathogenesis of diverse tumour types, and clinical reagents that specifically target the FGFs or FGF receptors are being developed. Although FGF signalling can drive tumorigenesis, in different contexts FGF signalling can mediate tumour protective functions; the identification of the mechanisms that underlie these differential effects will be important to understand how FGF signalling can be most appropriately therapeutically targeted.