Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
79,019 result(s) for "Fibroblasts"
Sort by:
Exploring mechanisms of FGF signalling through the lens of structural biology
Fibroblast growth factors (FGFs) mediate a broad range of functions in both the developing and adult organism. The accumulated wealth of structural information on the FGF signalling pathway has begun to unveil the underlying molecular mechanisms that modulate this system to generate a myriad of distinct biological outputs in development, tissue homeostasis and metabolism. At the ligand and receptor level, these mechanisms include alternative splicing of the ligand (FGF8 subfamily) and the receptor (FGFR1-FGFR3), ligand homodimerization (FGF9 subfamily), site-specific proteolytic cleavage of the ligand (FGF23), and interaction of the ligand and the receptor with heparan sulphate cofactor and Klotho co-receptor.
Correction to: AUGS/IUGA scientific meeting
In the originally published version of the Abstracts article, the figure presented in Poster 204 entitled “Exosomes derived from fibroblasts in anterior vaginal wall associated with the pathogenesis of female stress urinary incontinence by promoting fibroblasts migration”.
P5 Assessment of adult rat cardiac fibroblast viability following chronic sunitinib treatment
IntroductionThe tyrosine kinase inhibitor sunitinib has dramatically improved cancer therapy in recent years however, this success has been marred by reports of associated cardiotoxicity. The effect of sunitinib on cardiac myocyte function has been extensively studied, yet little is known of wider ranging effects on cardiac non-myocytes. Cardiac fibroblasts (CF) are the most abundant cell type within the heart and are responsible for maintaining cardiac structure via extracellular matrix remodelling and for facilitating synchronised cardiac contraction. Here, we have investigated whether chronic sunitinib treatment adversely affects CF viability.MethodsCFs were isolated from adult male Sprague-Dawley rats (aged 10 weeks, weighing 350–450 g) via bulk collagenase digestion and were maintained in culture before treatment with sunitinib (0.1–10 µM) for 18 hour in the presence of serum (DMEM supplemented with 20% FBS). Cell phenotype and growth were imaged using a Leica EC3 digital camera affixed to a Leica DM IL LED inverted microscope. MTT assays and FACS were used to assess cell viability. Data is presented as mean values±SD of n observations, where n represents the number of samples. Comparisons were assessed by one-way ANOVA with post hoc Dunnett’s test.ResultsCell imaging indicated visible alterations in fibroblast phenotype following 3 µM sunitinib treatment with significant cell loss at 10 µM. Assessment of CF viability via MTT assays showed a significant reduction in viable cells following treatment with 10 µM sunitinib (74.02%±4.53% vs 94.12%±6.95% (% viable cells, sunitinib vs vehicle), n=4, p=0.0002). Further analysis via FACS confirmed these MTT findings, showing a dose-dependent reduction in the percentage of healthy cells following drug treatment (44.00%±14.49% vs 95.83%±2.06% (% healthy cells, 3 µM sunitinib vs vehicle), n=3, p=0.0001) and (1.25%±0.50% vs 95.83%±2.06% (10µM sunitinib vs vehicle), n=3, p=0.0001). An increase in the number of late apoptotic (17.56%±13.38% vs 1.13%±0.43% (% late apoptotic cells, sunitinib vs vehicle), n=3, p=0.004) and necrotic cells (56.33%±36.57% vs 1.69%±2.55% (% necrotic cells, sunitinib vs vehicle), n=3, p=0.0002) at 10 µM sunitinib was also observed.ConclusionsSunitinib causes a dose dependent decrease in CF viability with significant effects observed at concentrations as low as 3 µM. These results suggest that the cardiotoxic effects of sunitinib are likely to impact on both contractile and non-contractile cells of the heart. Further work is under way to assess how clinical doses can alter CF function. This may enhance understanding towards mechanisms related to sunitinib-induced cardiotoxicity.
Pemigatinib: First Approval
Pemigatinib (PEMAZYRE™), a small molecule inhibitor of fibroblast growth factor receptor (FGFR) 1, FGFR2 and FGFR3, received accelerated approval in April 2020 in the USA for the treatment of adults with previously treated, unresectable, locally advanced or metastatic cholangiocarcinoma and a FGFR2 fusion or other rearrangement, as detected by a US FDA-approved test. Developed by Incyte Corporation, it is the first targeted treatment for cholangiocarcinoma in the USA. The recommended dosage of pemigatinib is 13.5 mg once daily, administered orally with or without food, on days 1–14 of a 21-day cycle until disease progression or unacceptable toxicity. Pemigatinib received orphan designation for the treatment of myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2 in August 2019 in the USA. A regulatory assessment for pemigatinib as a treatment for adults with locally advanced or metastatic cholangiocarcinoma and a FGFR2 fusion or rearrangement that is relapsed or refractory after ≥ 1 line of systemic therapy is underway in the EU. Pemigatinib is also undergoing clinical development in various countries worldwide for use in several other FGFR-driven malignancies (e.g. solid tumour, urothelial carcinoma). This article summarizes the milestones in the development of pemigatinib leading to this first approval for the treatment of adults with previously treated, unresectable, locally advanced or metastatic cholangiocarcinoma and a FGFR2 fusion or other rearrangement, as detected by a US FDA-approved test.
FGF-dependent metabolic control of vascular development
Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.
Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression
Despite initial and sometimes dramatic responses of specific NSCLC tumors to EGFR TKIs, nearly all will develop resistance and relapse. Gene expression analysis of NSCLC cell lines treated with the EGFR TKI, gefitinib, revealed increased levels of FGFR2 and FGFR3 mRNA. Analysis of gefitinib action on a larger panel of NSCLC cell lines verified that FGFR2 and FGFR3 expression is increased at the mRNA and protein level in NSCLC cell lines in which the EGFR is dominant for growth signaling, but not in cell lines where EGFR signaling is absent. A luciferase reporter containing 2.5 kilobases of fgfr2 5' flanking sequence was activated after gefitinib treatment, indicating transcriptional regulation as a contributing mechanism controlling increased FGFR2 expression. Induction of FGFR2 and FGFR3 protein as well as fgfr2-luc activity was also observed with Erbitux, an EGFR-specific monoclonal antibody. Moreover, inhibitors of c-Src and MEK stimulated fgfr2-luc activity to a similar degree as gefitinib, suggesting that these pathways may mediate EGFR-dependent repression of FGFR2 and FGFR3. Importantly, our studies demonstrate that EGFR TKI-induced FGFR2 and FGFR3 are capable of mediating FGF2 and FGF7 stimulated ERK activation as well as FGF-stimulated transformed growth in the setting of EGFR TKIs. In conclusion, this study highlights EGFR TKI-induced FGFR2 and FGFR3 signaling as a novel and rapid mechanism of acquired resistance to EGFR TKIs and suggests that treatment of NSCLC patients with combinations of EGFR and FGFR specific TKIs may be a strategy to enhance efficacy of single EGFR inhibitors.
Fibroblast growth factor signalling: from development to cancer
Fibroblast growth factors (FGFs) and their receptors control a wide range of biological functions, regulating cellular proliferation, survival, migration and differentiation. Although targeting FGF signalling as a cancer therapeutic target has lagged behind that of other receptor tyrosine kinases, there is now substantial evidence for the importance of FGF signalling in the pathogenesis of diverse tumour types, and clinical reagents that specifically target the FGFs or FGF receptors are being developed. Although FGF signalling can drive tumorigenesis, in different contexts FGF signalling can mediate tumour protective functions; the identification of the mechanisms that underlie these differential effects will be important to understand how FGF signalling can be most appropriately therapeutically targeted.
Initiation of Conceptus Elongation Coincides with an Endometrium Basic Fibroblast Growth Factor (FGF2) Protein Increase in Heifers
Fibroblast growth factors (FGF) play an important role during embryo development. To date, the role of FGF and the respective receptors (FGFR) during the preimplantation phase in cattle are not fully characterized. We examined FGF1, FGF2, FGFR1, FGFR2, and FGFR3 in cyclic and early pregnant heifers at Days 12, 15, and 18 after insemination (Day 0). Endometrial FGF1 mRNA transcript abundance in heifers varied significantly with respect to the day after insemination, the pregnancy status, and their interaction. The expression was higher in nonpregnant than in pregnant heifers at Day 18. The conceptus transcripts abundance of FGFR2 and FGFR3 were significantly lower at Day 15 than 18. In the endometrium, FGF1 protein abundance significantly decreased from Day 12 onwards and FGF2 protein abundance showed a minor, but a significant increase at Day 15 in comparison to Days 12 and 18. We concluded that the decrease in FGF1 mRNA expression in pregnant heifers at Day 18 points towards a potential contribution of FGF1 in the preimplantation process. Additionally, successful embryo elongation might require a spatiotemporal FGF2 protein increase in the endometrium.
Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors
The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. Significance Inhibitors of the FGF receptors (FGFRs) are currently under clinical investigation for the treatment of various cancers. All currently approved kinase inhibitors eventually are rendered useless by the emergence of drug-resistant tumors. We used structure-based drug design to develop the first, to our knowledge, selective, next-generation covalent FGFR inhibitors that can overcome the most common form of kinase inhibitor resistance, the mutation of the so-called “gatekeeper” residue located in the ATP-binding pocket. We also describe a novel kinase inhibitor design strategy that uses a single electrophile to target covalently cysteines that are located in different positions within the ATP-binding pocket. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance.