Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,381 result(s) for "Fire resistance"
Sort by:
Major Issues of Theory and Practice of Fire Resistance of Reinforced Concrete Structures and Buildings
The basic problems of the theory such as principle of assigning classes of fire resistance, reliability issues, alternative approach to calculation methods, mathematical models of concrete and reinforcement deformation diagram, numerical modelling techniques, temperature analysis and calculation of mechanical work of structural system in fire conditions have been considered. It is revealed that the real practical problem is the lack of professional training of civil engineers in Ukraine and abroad.
Numerical Analysis of Tendon Temperature Considering Thermal Contact Conductance
This study used finite element analysis to examine how tendon configuration affects the temperature behavior of post-tensioned concrete structures during fire exposure. The thermal behavior of various tendon configurations was modeled, showing good agreement with experimental data. Parametric studies found that unbonded single-strand tendons (S) and prestressing (pretensioned) strands (R) had lower thermal resistance than bonded post-tensioned tendons (B), unbonded post-tensioned tendons (U), and grouted extruded-strand tendons (G). The S and R specimens stayed at or below the critical temperature for one-way slabs, validating current safety codes. The B, U, and G specimens remained well below critical temperatures, indicating that a thinner concrete cover might suffice. These findings highlight the need to consider tendon configuration in structural fire-resistance evaluation and incorporate heat resistance assessment to ensure the safety and efficiency of prestressed concrete structures during fires. Keywords: concrete cover thickness; fire-resistance performance; numerical analysis; post-tensioned (PT) slab; tendon configuration; thermal contact conductance.
Optimizing Ammonium Polyphosphate–Acrylic Intumescent Coatings with Sustainable Fillers for Naval Fire Safety
This study explores the potential of natural and recycled materials to enhance the fire behavior of eco-friendly intumescent coatings, compared to a traditional ammonium polyphosphate (APP)-based one. To achieve this, cork, halloysite clay, and recycled glass were evaluated as natural fillers and sustainable components within the coating formulation. The aim was to reduce the reliance on synthetic materials and minimize the environmental impact while maintaining fire performance. Fire exposure tests were conducted to assess the in situ char formation and its relationship to the heat source and char foaming process. The results highlighted that all functionalized coatings exhibited suitable intumescent behavior. The best results were evidenced by cork-filled coating that evidenced an intumescent capacity about 40% higher than the traditional ammonium polyphosphate (APP)-based one. This provided valuable insights into the coating’s real-time response to fire, determining its suitability for various fire-resistant applications.
Fire risk assessment of bridges: from state of the art to structural vulnerability mitigation
In recent years, due to the rapid urbanization, the fire risk in transport infrastructures is becoming more critical. These fires, typically caused by highly flammable materials, can significantly compromise the stability of the structure, as well as cause significant economic and social losses. However, in current regulations, no fire design or verification criteria are provided for bridges and the buildings prescriptions are not directly applicable due to the significant differences among the fire conditions. Therefore, starting from a deep literature review, different performance levels for bridges’ structural fire resistance were proposed. These levels were linked to the fire risk classification suggested by Kodur et al., for identifying the most vulnerable bridges to fire. This methodology was applied both to the prescriptive and performance-based approaches, using nominal and natural fire curves derived by advanced zone models of several bridge fire scenarios. To better investigate the structural fire performance of bridges, parametric analyses of a typological bridge were conducted for identifying the most critical structural systems and fire scenarios. One of the most relevant finding is that the use of performance-based approach allows to consider more realistic fire conditions, to satisfy higher performance levels with an optimization of the fire protection design. Therefore, the proposed approach can be useful both for designers and industrial category to assess the bridge performances in fire, not only according to prescriptive approach but also considering the performance-based one.
Possibilities of Using Geopolymers in Welding Processes and Protection against High Temperatures
Geopolymer materials have long been known for their competitive properties against traditional construction materials. Their special features include high resistance to elevated temperatures and good fire resistance. They are typically used as insulating materials at temperatures not exceeding 100 °C (because they can achieve a thermal conductivity coefficient of 0.060 W/m × K or less under these conditions). Still, they can also be used as thermal insulation at temperatures exceeding 1000 °C. One technology that uses very high temperatures is metal welding technology, where temperatures often exceed as many as 3000 °C. Geopolymers, due to their properties, can also be an interesting new alternative in various welding applications. This paper presents the preliminary results of pot-proofing the resistance of geopolymers to temperatures exceeding 3000 °C. Test results of a foamed geopolymer insulating a steel substrate are presented, and a geopolymer mold for thermite rail welding was made and realistically tested. The results confirmed the feasibility of using cast geopolymer molds for thermite welding of railroad rails. The geopolymer material performed well during the test and no cracks or other damage occurred. The following article presents the potential of using geopolymer materials for welding applications.
Numerical Simulation Study on Fire Resistance Performance of Prefabricated Shear Walls Connected by Sleeve Grouting
As a critical element within the prefabricated structural system, the prefabricated shear wall connected by sleeve grouting is renowned for its superior mechanical performance and high construction efficiency. It is widely applied in mid- and high-rise buildings. However, under fire conditions, not only do the material properties degrade, but the structural connections may also fail, significantly compromising the structural stability and safety. Therefore, this study delves into the fire resistance performance of such prefabricated shear walls. The research primarily focuses on analyzing fire resistance characteristics, including deformation patterns, lateral and axial deformations, fire resistance limits, and other performance metrics, for both prefabricated and cast-in-place shear walls subjected to three hours of single-sided fire exposure. Additionally, a parametric analysis is performed. The results reveal that, after three hours of single-sided fire exposure, the temperature distribution patterns at the mid-width and mid-height sections of the prefabricated shear wall generally resemble those of the cast-in-place wall, displaying arch-shaped and strip-shaped distributions, respectively. However, due to the presence of sleeves, higher temperatures are observed near the sleeve areas in the prefabricated wall, along with a more extensive high-temperature zone. Throughout the three-hour fire exposure, both types of shear walls demonstrated satisfactory structural stability and thermal insulation performance, meeting the requirements for a first-level fire resistance rating (3 h). Nevertheless, greater axial and lateral deformations were noted in the prefabricated shear wall. Key factors influencing the fire resistance performance of the sleeve-connected prefabricated shear wall include the axial compression ratio, longitudinal reinforcement diameter, protective layer thickness, and height-to-thickness ratio. Specifically, axial deformation is found to be directly proportional to the axial compression ratio and height-to-thickness ratio, while inversely proportional to the longitudinal reinforcement diameter and protective layer thickness. Lateral deformation is directly proportional to the axial compression ratio and longitudinal reinforcement diameter, and exhibits a trend of initially increasing and then decreasing with an increase in protective layer thickness, and initially decreasing and then increasing with an increase in the height-to-thickness ratio.
Behavior of Unbonded Post-Tensioned Concrete Slabs Exposed to Fire
With the development and commercialization of post-tensioned (PT) concrete structures, concerns pertaining to structural safety for disasters and diverse conditions, such asfire and high temperatures, have emerged. To better understand fire-resistance performance, effects associated with cover thickness and tendon configurations for six unbonded PT concrete slabs were evaluated in regard to temperature changes, deflection, tendon tensile forces, and fire endurance/time. In addition, the factors and relationship between the extent of damage caused by concrete cracking/delamination and tendon force at post-tensioning were evaluated. Thermal resistance and deflection rates for materials such as galvanized steel duct or high-density polyethylene (HDPE) sheathing were also examined. It is the authors ' hope that the aforementioned information identifying parameters affecting fire-resistance performance of PT slabs may be helpful to the practitioner when considering tendon configurations for unbonded PT concrete structures.
Fire Resistance Tests on Prestressed Concrete Box Girder with Intumescent Fire-Retardant Coatings
The fire resistance of prestressed concrete (PC) structures is seriously affected due to the sensitivity of these structures and significant damage to high temperature. With the continuous improvement of the fire resistance rating of the structures, the fire resistance of PC structures has attracted much attention. According to the relevant research, the reasonable fire protection and heat insulation measures can effectively improve the fire resistance of the PC structures and meet requirements of the fire resistance rating. However, very limited research has been conducted on the effect of intumescent fire-retardant coating (IFC) on the fire resistance of PC structures. Hence, the fire resistance of PC box girder coated with IFC is studied in this paper. Under the combined thermal load and external load, the appearance, thermal response, deflection, prestress variation and fire resistance of the structures under high temperature are measured and compared. The effect of IFC on the fire resistance of PC box girder is preliminarily studied. The test results showed that the IFC can effectively reduce the spalling, bursting and cracking of concrete, effectively prevent concrete structure of reaching very high temperature, significantly reduce the deflection of PC structure at high temperature, and effectively protect the structural prestress. The fire resistance of PC structures can be effectively improved by adopting IFC. In addition, it is found that the fire resistance of PC box girder with high flexural rigidity may be determined by its ultimate bearing capacity rather than its ultimate deflection to high temperature.
Thermal Contact Conductance-Based Thermal Behavior Analytical Model for a Hybrid Floor at Elevated Temperatures
Hybrid floors infilled with polymeric materials between two steel plates were developed as a prefabricated floor system in the construction industry. However, the floor’s fire resistance performance has not been investigated. To evaluate this, fire tests suggested by the Korean Standards should be performed. As these tests are costly and time consuming, the number of variables were limited. However, many variables can be investigated in other ways such as furnace tests and finite element analysis (FEA) with less cost and time. In this study, furnace tests on heated surface areas smaller than 1 m2 were conducted to investigate the thermal behavior of the hybrid floor at elevated temperatures. To obtain the reliability of the proposed thermal behavior analytical (TBA) model, verifications were conducted by FEAs. Thermal contact conductance including interfacial thermal properties between two materials was adopted in the TBA model, and the values at elevated temperatures were suggested based on thermo-gravimetric analyses results and verified by FEA. Errors between the tests and TBA model indicated that the model was adequate in predicting the temperature distribution in small-scale hybrids. Furthermore, larger furnace tests and analysis results were compared to verify the TBA model’s application to different sized hybrid floors.
Effects of High Temperatures on the Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite Cables Protected with Fire-Retardant Materials
In this study, the safe critical temperature that can be tolerated by CFRP tendons under normal working conditions was derived through tensile tests at room and high temperatures. Next, the times required to reach a safe critical temperature for CFRP cables protected with different types of fire-retardant materials of various thicknesses were determined through fire resistance tests, Finally, fitting the surface of the finite element simulation results allowed the establishment of the temperature rise calculation model of CFRP tendons under the protection of fire-retardant materials. The results showed that 300 °C can be regarded as the safe critical temperature. Both high-silica needled felt and ceramic fiber felt exhibited high fireproof performance. With an increase in the thickness of the fire-retardant material, the time for the CFRP tendon to reach the inflection point of the heating rate increased, and the safe fire resistance time increased exponentially. According to the HC temperature rise curve, the fire resistance time of CFRP tendons protected by 24 mm thick high-silica needled felt was 45 min, and that for CFRP tendons protected by 24 mm thick ceramic fiber felt was 39.5 min. Under the action of fire corresponding to the hydrocarbon temperature rise model, the safe fire resistance time of CFRP tendons protected by 45 mm high-silica needled felt or 50 mm ceramic fiber felt was more than 2 h, sufficient to meet the specification. The proposed model of fire resistance performance enables the determination of the thickness of the fire resistance material required to obtain different degrees of fire resistance for CFRP cables for structural use.