Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,219
result(s) for
"Fish Diseases - epidemiology"
Sort by:
Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia
by
Larsson, D. G. Joakim
,
Zhao, Cheng
,
Wang, Yu
in
631/158/2446/1491
,
631/158/2446/2447
,
631/326/1762
2021
Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals—the fastest growing food animal sector globally—AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000–2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia’s major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.
Trends in antimicrobial resistance (AMR) in aquatic food animals are seldom documented, particularly in Asia. Here, Schar et al. review 749 point prevalence surveys, describing AMR trends in Asian aquaculture and fisheries over two decades, and identifying resistance hotspots as well as regions that would benefit most from future surveillance efforts.
Journal Article
Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review
2018
Mycobacterium marinum is an opportunistic pathogen inducing infection in fresh and marine water fish. This pathogen causes necrotizing granuloma like tuberculosis, morbidity and mortality in fish. The cell wall-associated lipid phthiocerol dimycocerosates, phenolic glycolipids and ESAT-6 secretion system 1 (ESX-1) are the conserved virulence determinant of the organism. Human infections with Mycobacterium marinum hypothetically are classified into four clinical categories (type I-type IV) and have been associated with the exposure of damaged skin to polluted water from fish pools or contacting objects contaminated with infected fish. Fish mycobacteriosis is clinically manifested and characterized in man by purple painless nodules, liable to develop into superficial crusting ulceration with scar formation. Early laboratory diagnosis of M. marinum including histopathology, culture and PCR is essential and critical as the clinical response to antibiotics requires months to be attained. The pathogenicity and virulence determinants of M. marinum need to be thoroughly and comprehensively investigated and understood. In spite of accumulating information on this pathogen, the different relevant data should be compared, connected and globally compiled. This article is reviewing the epidemiology, virulence factors, diagnosis and disease management in fish while casting light on the potential associated public health hazards.
Journal Article
One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia
2019
In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease caused by the group B Streptococcus (GBS; Streptococcus agalactiae). Disease, predominantly septic arthritis and meningitis, was associated with sequence type (ST)283, acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in neonates and older adults with co-morbidities, this outbreak affected non-pregnant and younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283 had only been reported from twenty humans in Hong Kong and two in France, and from one fish in Thailand. We hypothesised that ST283 was causing region-wide infection in Southeast Asia.
We performed a literature review, whole genome sequencing on 145 GBS isolates collected from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences including 227 variants of ST283 from humans and animals. Although almost absent outside Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13 (31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in 62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species in Singapore markets, and a diseased frog in China.
GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283 is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is predominantly a foodborne disease. However, whether transmission is from aquaculture to humans, or vice versa, or involves an unidentified reservoir remains unknown. Creation of cross-border collaborations in human and animal health are needed to complete the epidemiological picture.
Journal Article
Effects of disease, antibiotic treatment and recovery trajectory on the microbiome of farmed seabass (Dicentrarchus labrax)
by
Severino, Ricardo
,
Rosado, Daniela
,
Cable, Jo
in
631/326/2565/2134
,
631/326/2565/2142
,
Animals
2019
The mucosal surfaces of fish harbour microbial communities that can act as the first-line of defense against pathogens. Infectious diseases are one of the main constraints to aquaculture growth leading to huge economic losses. Despite their negative impacts on microbial diversity and overall fish health, antibiotics are still the method of choice to treat many such diseases. Here, we use 16 rRNA V4 metataxonomics to study over a 6 week period the dynamics of the gill and skin microbiomes of farmed seabass before, during and after a natural disease outbreak and subsequent antibiotic treatment with oxytetracycline.
Photobacterium damselae
was identified as the most probable causative agent of disease. Both infection and antibiotic treatment caused significant, although asymmetrical, changes in the microbiome composition of the gills and skin. The most dramatic changes in microbial taxonomic abundance occurred between healthy and diseased fish. Disease led to a decrease in the bacterial core diversity in the skin, whereas in the gills there was both an increase and a shift in core diversity. Oxytetracycline caused a decrease in core diversity in the gill and an increase in the skin. Severe loss of core diversity in fish mucosae demonstrates the disruptive impact of disease and antibiotic treatment on the microbial communities of healthy fish.
Journal Article
Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia
by
Zamostiano, Rachel
,
Toussaint, Nora C.
,
Zody, Michael C.
in
Amino Acid Sequence
,
Amino acids
,
Animals
2016
Tilapia are an important global food source due to their omnivorous diet, tolerance for high-density aquaculture, and relative disease resistance. Since 2009, tilapia aquaculture has been threatened by mass die-offs in farmed fish in Israel and Ecuador. Here we report evidence implicating a novel orthomyxo-like virus in these outbreaks. The tilapia lake virus (TiLV) has a 10-segment, negative-sense RNA genome. The largest segment, segment 1, contains an open reading frame with weak sequence homology to the influenza C virus PB1 subunit. The other nine segments showed no homology to other viruses but have conserved, complementary sequences at their 5′ and 3′ termini, consistent with the genome organization found in other orthomyxoviruses. In situ hybridization indicates TiLV replication and transcription at sites of pathology in the liver and central nervous system of tilapia with disease. IMPORTANCE The economic impact of worldwide trade in tilapia is estimated at$7.5 billion U.S. dollars (USD) annually. The infectious agent implicated in mass tilapia die-offs in two continents poses a threat to the global tilapia industry, which not only provides inexpensive dietary protein but also is a major employer in the developing world. Here we report characterization of the causative agent as a novel orthomyxo-like virus, tilapia lake virus (TiLV). We also describe complete genomic and protein sequences that will facilitate TiLV detection and containment and enable vaccine development. The economic impact of worldwide trade in tilapia is estimated at $ 7.5 billion U.S. dollars (USD) annually. The infectious agent implicated in mass tilapia die-offs in two continents poses a threat to the global tilapia industry, which not only provides inexpensive dietary protein but also is a major employer in the developing world. Here we report characterization of the causative agent as a novel orthomyxo-like virus, tilapia lake virus (TiLV). We also describe complete genomic and protein sequences that will facilitate TiLV detection and containment and enable vaccine development.
Journal Article
Evaluation of a national operational salmon lice monitoring system - from physics to fish
2018
The Norwegian government has decided that the aquaculture industry shall grow, provided that the growth is environmentally sustainable. Sustainability is scored based on the mortality of wild salmonids caused by the parasitic salmon lice. Salmon lice infestation pressure has traditionally been monitored through catching wild sea trout and Arctic char using nets or traps or by trawling after Atlantic salmon postsmolts. However, due to that the Norwegian mainland coastline is nearly 25 000 km, complementary methods that may be used in order to give complete results are needed. We have therefore developed an operational salmon lice model, which calculates the infestation pressure all along the coast in near real-time based on a hydrodynamical ocean model and a salmon lice particle tracking model. The hydrodynamic model generally shows a negative temperature bias and a positive salinity bias compared to observations. The modeled salmon lice dispersion correlates with measured lice on wild salmonids caught using traps or nets. This allows for using two complementary data sources in order to determine the infestation pressure of lice originating from fish farms on wild salmonids, and thereby provide an improved monitoring system for assessing risk and sustainability which forms the basis for knowledge-based advice to management authorities.
Journal Article
Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland
2010
Ecological changes affect pathogen epidemiology and evolution and may trigger the emergence of novel diseases. Aquaculture radically alters the ecology of fish and their pathogens. Here we show an increase in the occurrence of the bacterial fish disease Flavobacterium columnare in salmon fingerlings at a fish farm in northern Finland over 23 years. We hypothesize that this emergence was owing to evolutionary changes in bacterial virulence. We base this argument on several observations. First, the emergence was associated with increased severity of symptoms. Second, F. columnare strains vary in virulence, with more lethal strains inducing more severe symptoms prior to death. Third, more virulent strains have greater infectivity, higher tissue-degrading capacity and higher growth rates. Fourth, pathogen strains co-occur, so that strains compete. Fifth, F. columnare can transmit efficiently from dead fish, and maintain infectivity in sterilized water for months, strongly reducing the fitness cost of host death likely experienced by the pathogen in nature. Moreover, this saprophytic infectiousness means that chemotherapy strongly select for strains that rapidly kill their hosts: dead fish remain infectious; treated fish do not. Finally, high stocking densities of homogeneous subsets of fish greatly enhance transmission opportunities. We suggest that fish farms provide an environment that promotes the circulation of more virulent strains of F. columnare. This effect is intensified by the recent increases in summer water temperature. More generally, we predict that intensive fish farming will lead to the evolution of more virulent pathogens.
Journal Article
Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review
2016
Infectious hematopoietic necrosis virus (IHNV, Rhabdoviridae), is the causative agent of infectious hematopoietic necrosis (IHN), a disease notifiable to the World Organisation for Animal Health, and various countries and trading areas (including the European Union). IHNV is an economically important pathogen causing clinical disease and mortalities in a wide variety of salmonid species, including the main salmonid species produced in aquaculture, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). We reviewed the scientific literature on IHNV on a range of topics, including geographic distribution; host range; conditions required for infection and clinical disease; minimum infectious dose; subclinical infection; shedding of virus by infected fish; transmission via eggs; diagnostic tests; pathogen load and survival of IHNV in host tissues. This information is required for a range of purposes including import risk assessments; parameterisation of disease models; for surveillance planning; and evaluation of the chances of eradication of the pathogen to name just a few. The review focuses on issues that are of relevance for the European context, but many of the data summarised have relevance to IHN globally. Examples for application of the information is presented and data gaps highlighted.
Journal Article
Genotypic Characterization of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Southeast Asian Aquaculture
2023
Infectious spleen and kidney necrosis virus (ISKNV) is a species within the genus Megalocytivirus (family Iridoviridae), which causes high mortality disease in many freshwater and marine fish species. ISKNV was first reported in Asia and is an emerging threat to aquaculture with increasing global distribution, in part due to its presence in ornamental fish with clinical and subclinical infections. The species ISKNV includes three genotypes: red seabream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), and ISKNV. There is an increasing overlap in the recognized range of susceptible fish hosts and the geographic distribution of these distinct genotypes. To better understand the disease caused by ISKNV, a nucleic acid hybridization capture enrichment was used prior to sequencing to characterize whole genomes from archived clinical specimens of aquaculture and ornamental fish from Southeast Asia (n = 16). The method was suitable for tissue samples containing 2.50 × 104–4.58 × 109 ISKNV genome copies mg−1. Genome sequences determined using the hybridization capture method were identical to those obtained directly from tissues when there was sufficient viral DNA to sequence without enrichment (n = 2). ISKNV genomes from diverse locations, environments, and hosts had very high similarity and matched established genotype classifications (14 ISKNV genotype Clade 1 genomes with >98.81% nucleotide similarity). Conversely, two different genotypes were obtained at the same time and location (RSIV and ISKNV from grouper, Indonesia with 92.44% nucleotide similarity). Gene-by-gene analysis with representative ISKNV genomes identified 59 core genes within the species (>95% amino acid identity). The 14 Clade 1 ISKNV genomes in this study had 100% aa identity for 92–105 of 122 predicted genes. Despite high overall sequence similarity, phylogenetic analyses using single nucleotide polymorphisms differentiated isolates from different host species, country of origin, and time of collection. Whole genome studies of ISKNV and other megalocytiviruses enable genomic epidemiology and will provide information to enhance disease control in aquaculture.
Journal Article
Diatoms-endoparasite association in fish from the marine pacific coast of Colombia (Buenaventura)
by
Agudelo Morales, Carlos E.
,
Benavides-Montaño, Javier Antonio
,
Potosi-Pai, Vanessa
in
Algae
,
Animals
,
Aquaculture
2024
The association of parasites and diatoms has been previously reported as an important mechanism to control bacteria and parasites to avoid resistance to chemical usage. The aim of this study was to investigate the association between diatoms genus and parasites within the gastrointestinal compartments (GICs) of commercial fish in fisheries of the marine Pacific coast of Colombia (Buenaventura). A total of 104 GICs from marine fish were sampled. The GICs analysis revealed 14 diatom genera (N = 14). The most prevalent were Coscinodiscus spp., which was present in 58/104 samples, 55.8% [95% CI = 37.5–62.1%]; Cyclotella spp., 28/104, 26.9% [95% CI = 0–25%]; Paralia spp., 26/104, 25% [95% CI = 12.5–44.8%]; Gyrosigma spp., 11/104, 10.6% [95% CI = 0–33.3%]; Navicula spp., 11/104, 10.6%, [95% CI = 0–20.7%]. The GICs analysis revealed a diversity of genera parasites. The most prevalent were Ameboid cysts, 25/104, 24% [95% CI = 12.5–48.3%]; Eimeria spp., 11/104, 10.6% [95% CI = 10.3–15.7%]; Anisakis spp., 29/104, 27.1% [95% CI = 27.1 (SD±12.9%)]. This is the first report concerning diatoms and parasites association in fish from the Pacific Coast of Colombia and highlights the relevance of Coscinodiscus spp. and Gyrosigma spp. as important diatoms and potential candidates for studying pharmaceutical action in aquaculture. Further studies about diatoms-parasites association in aquaculture are required.
Journal Article