Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
105,783
result(s) for
"Flow velocity"
Sort by:
4D Flow cardiovascular magnetic resonance consensus statement: 2023 update
by
Raimondi, Francesca
,
Barker, Alex J
,
Bissell, Malenka M
in
Accuracy
,
Age groups
,
Blood vessels
2023
Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.
Journal Article
110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics
2023
Light-based in-vivo brain imaging relies on light transport over large distances of highly scattering tissues. Scattering gradually reduces imaging contrast and resolution, making it difficult to reach structures at greater depths even with the use of multiphoton techniques. To reach deeper, minimally invasive endo-microscopy techniques have been established. These most commonly exploit graded-index rod lenses and enable a variety of modalities in head-fixed and freely moving animals. A recently proposed alternative is the use of holographic control of light transport through multimode optical fibres promising much less traumatic application and superior imaging performance. We present a 110 μm thin laser-scanning endo-microscope based on this prospect, enabling in-vivo volumetric imaging throughout the whole depth of the mouse brain. The instrument is equipped with multi-wavelength detection and three-dimensional random access options, and it performs at lateral resolution below 1 μm. We showcase various modes of its application through the observations of fluorescently labelled neurones, their processes and blood vessels. Finally, we demonstrate how to exploit the instrument to monitor calcium signalling of neurones and to measure blood flow velocity in individual vessels at high speeds.
Controlled light transport through multimode fibres has recently emerged as uniquely atraumatic prospect to study deep brain structures. Here, authors present hair-thin endoscope providing detailed view through the whole depth of living animal brain.
Journal Article
Transcranial volumetric imaging using a conformal ultrasound patch
2024
Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow
1
, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording
2
. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as −1.51 ± 4.34 cm s
−1
, −0.84 ± 3.06 cm s
−1
and −0.50 ± 2.55 cm s
−1
for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.
A conformal ultrasound patch can be used for hands-free volumetric imaging and continuous monitoring of cerebral blood flow
Journal Article
Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults
2016
Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.
•Exercise-related changes in BDNF, IGF, VEGF and PDGF were measured in older adults•Changes in hippocampal perfusion, volume (via 7T MRI) and memory were assessed•Fitness-related vascular hippocampal plasticity was not linked to growth factors•Changes in IGF-I, hippocampal volume and memory were linked independent of exercise•Potential reasons for negative findings and methodological shortcomings are discussed
Journal Article
Statin contribution to middle cerebral artery blood flow velocity in older adults at risk for dementia
by
Tomoto, Tsubasa
,
Vidoni, Eric D
,
Thyfault, John P
in
Alzheimer's disease
,
Blood flow
,
Cerebral blood flow
2022
PurposeIt is plausible that statins could improve cerebral blood flow through pleiotropic mechanisms. The purpose of this investigation was to assess the contribution of statins to cerebrovascular variables in older adults with dyslipidemia and familial history of dementia. Furthermore, we explored the interaction between statin use and sex due to prevalent bias in statin trials.MethodsMiddle cerebral artery blood flow velocity (MCAv) was measured using transcranial Doppler ultrasound. Continuous supine rest recordings lasted 8 min. Participants included in analyses were statin (n = 100) or non-statin users (n = 112).ResultsMCAv and cerebrovascular conductance were significantly higher in statin users (p = 0.047; p = 0.04), and pulsatility index (PI) was significantly lower in statin users (p < 0.01). An interaction effect between statin use and sex was present for PI (p = 0.02); female statin users had significantly lower cerebrovascular resistance than the other three groups.ConclusionIn this cross-sectional analysis, statin use was positively associated with cerebrovascular variables in older adults at risk for dementia. Female statin users had significantly higher resting MCAv and cerebrovascular conductance than female non-statin users. The greatest contribution of statin use was the association with reduced cerebrovascular resistance. Given that cerebrovascular dysregulation is one of the earliest changes in Alzheimer’s disease and related dementia pathology, targeting the cerebrovasculature with statins may be a promising prevention strategy.
Journal Article
Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia—TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial
2016
For children with sickle cell anaemia and high transcranial doppler (TCD) flow velocities, regular blood transfusions can effectively prevent primary stroke, but must be continued indefinitely. The efficacy of hydroxycarbamide (hydroxyurea) in this setting is unknown; we performed the TWiTCH trial to compare hydroxyurea with standard transfusions.
TWiTCH was a multicentre, phase 3, randomised, open-label, non-inferiority trial done at 26 paediatric hospitals and health centres in the USA and Canada. We enrolled children with sickle cell anaemia who were aged 4–16 years and had abnormal TCD flow velocities (≥200 cm/s) but no severe vasculopathy. After screening, eligible participants were randomly assigned 1:1 to continue standard transfusions (standard group) or hydroxycarbamide (alternative group). Randomisation was done at a central site, stratified by site with a block size of four, and an adaptive randomisation scheme was used to balance the covariates of baseline age and TCD velocity. The study was open-label, but TCD examinations were read centrally by observers masked to treatment assignment and previous TCD results. Participants assigned to standard treatment continued to receive monthly transfusions to maintain 30% sickle haemoglobin or lower, while those assigned to the alternative treatment started oral hydroxycarbamide at 20 mg/kg per day, which was escalated to each participant's maximum tolerated dose. The treatment period lasted 24 months from randomisation. The primary study endpoint was the 24 month TCD velocity calculated from a general linear mixed model, with the non-inferiority margin set at 15 cm/s. The primary analysis was done in the intention-to-treat population and safety was assessed in all patients who received at least one dose of assigned treatment. This study is registered with ClinicalTrials.gov, number NCT01425307.
Between Sept 20, 2011, and April 17, 2013, 159 patients consented and enrolled in TWiTCH. 121 participants passed screening and were then randomly assigned to treatment (61 to transfusions and 60 to hydroxycarbamide). At the first scheduled interim analysis, non-inferiority was shown and the sponsor terminated the study. Final model-based TCD velocities were 143 cm/s (95% CI 140–146) in children who received standard transfusions and 138 cm/s (135–142) in those who received hydroxycarbamide, with a difference of 4·54 (0·10–8·98). Non-inferiority (p=8·82 × 10−16) and post-hoc superiority (p=0·023) were met. Of 29 new neurological events adjudicated centrally by masked reviewers, no strokes were identified, but three transient ischaemic attacks occurred in each group. Magnetic resonance brain imaging and angiography (MRI and MRA) at exit showed no new cerebral infarcts in either treatment group, but worsened vasculopathy in one participant who received standard transfusions. 23 severe adverse events in nine (15%) patients were reported for hydroxycarbamide and ten serious adverse events in six (10%) patients were reported for standard transfusions. The most common serious adverse event in both groups was vaso-occlusive pain (11 events in five [8%] patients with hydroxycarbamide and three events in one [2%] patient for transfusions).
For high-risk children with sickle cell anaemia and abnormal TCD velocities who have received at least 1 year of transfusions, and have no MRA-defined severe vasculopathy, hydroxycarbamide treatment can substitute for chronic transfusions to maintain TCD velocities and help to prevent primary stroke.
National Heart, Lung, and Blood Institute, National Institutes of Health.
Journal Article
Pharmacokinetic-Pharmacodynamic Relationship of Erenumab (AMG 334) and Capsaicin-Induced Dermal Blood Flow in Healthy and Migraine Subjects
by
Wu, Liviawati Sutjandra
,
Chen, Jiyun Sunny
,
Vu, Thuy
in
Adult
,
Antibodies, Monoclonal - blood
,
Antibodies, Monoclonal - pharmacology
2017
Purpose
Capsaicin-induced dermal blood flow (CIDBF) is a validated biomarker used to evaluate the target engagement of potential calcitonin gene-related peptide-blocking therapeutics for migraine. To characterize the pharmacokinetics (PK) and quantify the inhibitory effects of erenumab (AMG 334) on CIDBF, CIDBF data were pooled from a single- and a multiple-dose study in healthy and migraine subjects.
Methods
Repeated capsaicin challenges and DBF measurements were performed and serum erenumab concentrations determined. A population analysis was conducted using a nonlinear mixed-effects modeling approach. Effects of body weight, gender, and age on model parameters were evaluated.
Results
Two-compartment target-mediated drug disposition (TMDD) model assuming binding of erenumab in the central compartment best described the nonlinear PK of erenumab. Subcutaneous absorption half-life was 1.6 days and bioavailability was 74%. Erenumab produced a maximum inhibition of 89% (95% confidence interval: 87–91%). Erenumab concentrations required for 50% and 99% of maximum inhibition were 255 ng/mL and 1134 ng/mL, respectively. Increased body weight was associated with increased erenumab clearance but had no effect on the inhibitory effect on CIDBF.
Conclusions
Our results show that erenumab pharmacokinetics was best characterized by a TMDD model and resulted in potent inhibition of CIDBF.
Journal Article
Effect of empagliflozin on coronary microvascular function in patients with type 2 diabetes mellitus–A randomized, placebo-controlled cross-over study
2022
Results from large scale cardiovascular outcome trials in patients with type 2 diabetes mellitus (DM2) have found that sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce cardiovascular death and hospitalization for heart failure, but the mechanisms behind the beneficial cardiovascular effects are not fully understood. We tested the hypothesis that the SGLT2i, empagliflozin, improves non-endothelial dependent coronary microvascular function, thereby leading to better cardiac function.
Patients with DM2 followed at the endocrinology outpatient clinic at Bispebjerg University Hospital were included in a double blinded, placebo-controlled cross-over study. Participants were allocated equally to each treatment sequence using simple randomization and treated with empagliflozin 25 mg and placebo for 12 weeks, interrupted by 2 weeks wash-out period. The primary outcome was coronary microvascular function, assessed as coronary flow velocity reserve (CFVR) and measured with transthoracic doppler echocardiography. Echocardiographic parameters of cardiac function were measured, and blood samples were analyzed for a broad panel of cardiovascular biomarkers.
Thirteen patients were randomized to each sequence and 10 and 9 completed the study according to protocol, respectively, and were included in the analysis of outcome parameters. We found no improvement in CFVR (change in the empagliflozin period was -0.16 (SD 0.58)). There were no effects on cardiac systolic function or indicators of cardiac filling pressure. Well-known effects of empagliflozin were obtained, such as weight loss and reduction in Hba1c level. Creatinine level increased but remained within normal range. We observed a clear trend of reduction in cardiovascular biomarkers after empagliflozin treatment and increased levels after the placebo period. No serious adverse reactions were reported.
Despite effect on weight-loss, Hba1c and biomarkers, treatment with empagliflozin for 12 weeks did not improve CFVR in patients with DM2.
Journal Article
An Evaluation of Image Velocimetry Techniques under Low Flow Conditions and High Seeding Densities Using Unmanned Aerial Systems
by
Maddock, Ian
,
Pizarro, Alonso
,
Plavšić, Jasna
in
Algorithms
,
Cameras
,
Environmental monitoring
2020
Image velocimetry has proven to be a promising technique for monitoring river flows using remotely operated platforms such as Unmanned Aerial Systems (UAS). However, the application of various image velocimetry algorithms has not been extensively assessed. Therefore, a sensitivity analysis has been conducted on five different image velocimetry algorithms including Large Scale Particle Image Velocimetry (LSPIV), Large-Scale Particle Tracking Velocimetry (LSPTV), Kanade–Lucas Tomasi Image Velocimetry (KLT-IV or KLT), Optical Tracking Velocimetry (OTV) and Surface Structure Image Velocimetry (SSIV), during low river flow conditions (average surface velocities of 0.12–0.14 m s − 1 , Q60) on the River Kolubara, Central Serbia. A DJI Phantom 4 Pro UAS was used to collect two 30-second videos of the surface flow. Artificial seeding material was distributed homogeneously across the rivers surface, to enhance the conditions for image velocimetry techniques. The sensitivity analysis was performed on comparable parameters between the different algorithms, including the particle identification area parameters (such as Interrogation Area (LSPIV, LSPTV and SSIV), Block Size (KLT-IV) and Trajectory Length (OTV)) and the feature extraction rate. Results highlighted that KLT and SSIV were sensitive to changing the feature extraction rate; however, changing the particle identification area did not affect the surface velocity results significantly. OTV and LSPTV, on the other hand, highlighted that changing the particle identification area presented higher variability in the results, while changing the feature extraction rate did not affect the surface velocity outputs. LSPIV proved to be sensitive to changing both the feature extraction rate and the particle identification area. This analysis has led to the conclusions that for surface velocities of approximately 0.12 m s − 1 image velocimetry techniques can provide results comparable to traditional techniques such as ADCPs. However, LSPIV, LSPTV and OTV require additional effort for calibration and selecting the appropriate parameters when compared to KLT-IV and SSIV. Despite the varying levels of sensitivity of each algorithm to changing parameters, all configuration image velocimetry algorithms provided results that were within 0.05 m s − 1 of the ADCP measurements, on average.
Journal Article
Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise
2016
The hippocampus has been shown to demonstrate a remarkable degree of plasticity in response to a variety of tasks and experiences. For example, the size of the human hippocampus has been shown to increase in response to aerobic exercise. However, it is currently unknown what underlies these changes. Here we scanned sedentary, young to middle-aged human adults before and after a six-week exercise intervention using nine different neuroimaging measures of brain structure, vasculature, and diffusion. We then tested two different hypotheses regarding the nature of the underlying changes in the tissue. Surprisingly, we found no evidence of a vascular change as has been previously reported. Rather, the pattern of changes is better explained by an increase in myelination. Finally, we show that hippocampal volume increase is temporary, returning to baseline after an additional six weeks without aerobic exercise. This is the first demonstration of a change in hippocampal volume in early to middle adulthood suggesting that hippocampal volume is modulated by aerobic exercise throughout the lifespan rather than only in the presence of age related atrophy. It is also the first demonstration of hippocampal volume change over a period of only six weeks, suggesting that gross morphometric hippocampal plasticity occurs faster than previously thought.
•Human anterior hippocampal volume can be increased by only six weeks of regular aerobic exercise.•This increase in anterior hippocampal volume returns to baseline in the absence of continued aerobic exercise.•These changes can occur in middle adulthood, not only in the presence of age related atrophy.•Multimodal neuroimaging techniques support a change in myelination but not a change in vasculature within anterior hippocampus.
Journal Article