Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
40,848
result(s) for
"Flowers - genetics"
Sort by:
FIONA1-mediated methylation of the 3’UTR of FLC affects FLC transcript levels and flowering in Arabidopsis
by
Edwards, Ashleigh
,
Dolde, Ulla
,
Jia, Guifang
in
3' Untranslated regions
,
3' Untranslated Regions - genetics
,
Adenosine - genetics
2022
Adenosine bases of RNA can be transiently modified by the deposition of a methyl-group to form N 6 -methyladenosine (m 6 A). This adenosine-methylation is an ancient process and the enzymes involved are evolutionary highly conserved. A genetic screen designed to identify suppressors of late flowering transgenic Arabidopsis plants overexpressing the miP1a microProtein yielded a new allele of the FIONA1 (FIO1) m 6 A-methyltransferase. To characterize the early flowering phenotype of fio1 mutant plants we employed an integrative approach of mRNA-seq, Nanopore direct RNA-sequencing and meRIP-seq to identify differentially expressed transcripts as well as differentially methylated RNAs. We provide evidence that FIO1 is the elusive methyltransferase responsible for the 3’-end methylation of the FLOWERING LOCUS C ( FLC ) transcript. Furthermore, our genetic and biochemical data suggest that 3’-methylation stabilizes FLC mRNAs and non-methylated FLC is a target for rapid degradation.
Journal Article
Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida
by
Citerne, S
,
Barrière, Quentin
,
Leduc, Nathalie
in
Biological Transport
,
Botanics
,
Cytokinins - metabolism
2015
Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.
Journal Article
CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees
by
Charbonnel-Campaa, Laurence
,
Brunner, Amy M
,
Jansson, Stefan
in
Adaptation, Physiological - genetics
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2006
Forest trees display a perennial growth behavior characterized by a multiple-year delay in flowering and, in temperate regions, an annual cycling between growth and dormancy. We show here that the CO/FT regulatory module, which controls flowering time in response to variations in daylength in annual plants, controls flowering in aspen trees. Unexpectedly, however, it also controls the short-day-induced growth cessation and bud set occurring in the fall. This regulatory mechanism can explain the ecogenetic variation in a highly adaptive trait: the critical daylength for growth cessation displayed by aspen trees sampled across a latitudinal gradient spanning northern Europe.
Journal Article
A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis)
by
Hosokawa, Munetaka
,
Doi, Motoaki
,
Deguchi, Ayumi
in
Amino Acid Sequence
,
anthocyanins
,
Anthocyanins - biosynthesis
2011
Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in 'Michael J' (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse transcription–PCR analysis showed that expression of chalcone synthase 1 (DvCHS1), flavanone 3-hydroxylase (DvF3H), dihydroflavonol 4-reductase (DvDFR), anthocyanidin synthase (DvANS), and DvIVS encoding a basic helix–loop–helix transcription factor were suppressed, whereas that of chalcone isomerase (DvCHI) and DvCHS2, another CHS with 69% nucleotide identity with DvCHS1, was not suppressed in the yellow ray florets of MJY. A 5.4 kb CACTA superfamily transposable element, transposable element of Dahlia variabilis 1 (Tdv1), was found in the fourth intron of the DvIVS gene of MJW and MJY, and footprints of Tdv1 were detected in the variegated flowers of MJW. It is shown that only one type of DvIVS gene was expressed in MJOr, whereas these plants are likely to have three types of the DvIVS gene. On the basis of these results, the mechanism regulating the formation of orange and yellow ray florets in dahlia is discussed.
Journal Article
A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars
2013
The study was aimed to identify the factors that regulate the intensity of flower color in cyanic dahlia (Dahlia variabilis), using fifteen cultivars with different color intensities in their petals. The cultivars were classified into three groups based on their flavonoid composition: ivory white cultivars with flavones; purple and pink cultivars with flavones and anthocyanins; and red cultivars with flavones, anthocyanins, and chalcones. Among the purple, pink, and ivory white cultivars, an inverse relationship was detected between lightness, which was used as an indicator for color intensity and anthocyanin content. A positive correlation was detected between anthocyanin contents and the expression of some structural genes in the anthocyanin synthesis pathway that are regulated by DvIVS, a basic helix-loop-helix transcription factor. A positive correlation between anthocyanin content and expression of DvIVS was also found. The promoter region of DvIVS was classified into three types, with cultivars carrying Type. 1 promoter exhibited deep coloring, those carrying Type 2 and/or Type 3 exhibited pale coloring, and those carrying Type 1 and Type 2 and/or Type 3 exhibited medium coloring. The transcripts of the genes from these promoters encoded fulllength predicted proteins. These results suggested that the genotype of the promoter region in DvIVS is one of the key factors determining the flower color intensity.
Journal Article
Genome-wide comparative transcriptome analysis of the A4-CMS line ICPA 2043 and its maintainer ICPB 2043 during the floral bud development of pigeonpea
by
Singh, Indra P
,
Singh, Narendra P
,
Dutta Dibendu
in
Adenosine triphosphatase
,
Aldose 1-epimerase
,
Ascorbic acid
2021
Cytoplasmic male sterility (CMS) offers a unique system to understand cytoplasmic nuclear crosstalk, and is also employed for exploitation of hybrid vigor in various crops. Pigeonpea A4-CMS, a predominant source of male sterility, is being used for efficient hybrid seed production. The molecular mechanisms of CMS trait remain poorly studied in pigeonpea. We performed genome-wide transcriptome profiling of A4-CMS line ICPA 2043 and its isogenic maintainer ICPB 2043 at two different stages of floral bud development (stage S1 and stage S2). Consistent with the evidences from some other crops, we also observed significant difference in the expression levels of genes in the later stage, i.e., stage S2. Differential expression was observed for 143 and 55 genes within the two stages of ICPA 2043 and ICPB 2043, respectively. We obtained only 10 differentially expressed genes (DEGs) between the stage S1 of the two genotypes, whereas expression change was significant for 582 genes in the case of stage S2. The qRT-PCR assay of randomly selected six genes supported the differential expression of genes between ICPA 2043 and ICPB 2043. Further, GO and KEGG pathway mapping suggested a possible compromise in key bioprocesses during flower and pollen development. Besides providing novel insights into the functional genomics of CMS trait, our results were in strong agreement with the gene expression atlas of pigeonpea that implicated various candidate genes like sucrose-proton symporter 2 and an uncharacterized protein along with pectate lyase, pectinesterase inhibitors, l-ascorbate oxidase homolog, ATPase, β-galactosidase, polygalacturonase, and aldose 1-epimerase for pollen development of pigeonpea. The dataset presented here provides a rich genomic resource to improve understanding of CMS trait and its deployment in heterosis breeding in pigeonpea.
Journal Article
Tetrahydrofolate Modulates Floral Transition through Epigenetic Silencing
by
Cheng, Qian
,
Hu, Yong
,
Niu, Guoqi
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - physiology
2017
Folates, termed from tetrahydrofolate (THF) and its derivatives, function as coenzymes in one-carbon transfer reactions and play a central role in synthesis of nucleotides and amino acids. Dysfunction of cellular folate metabolism leads to serious defects in plant development; however, the molecular mechanisms of folate-mediated cellular modifications and physiological responses in plants are still largely unclear. Here, we reported that THF controls flowering time by adjusting DNA methylation-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Wild-type seedlings supplied with THF as well as the high endogenous THF content mutant dihydrofolate synthetase folypoly-Glu synthetase homolog B exhibited significant up-regulation of the flowering repressor of Flowering Wageningen and thereby delaying floral transition in a dose-dependent manner. Genome-wide transcripts and DNA methylation profiling revealed that THF reduces DNA methylation so as to manipulate gene expression activity. Moreover, in accompaniment with elevated cellular ratios between monoglutamylated and polyglutamylated folates under increased THF levels, the content of S-adenosylhomo-Cys, a competitive inhibitor of methyltransferases, was obviously higher, indicating that enhanced THF accumulation may disturb cellular homeostasis of the concerted reactions between folate polyglutamylation and folate-dependent DNA methylation. In addition, we found that the loss-of-function mutant of CG DNA methyltransferase MET1 displayed much less responsiveness to THF-associated flowering time alteration. Taken together, our studies revealed a novel regulatory role of THF on epigenetic silencing, which will shed lights on the understanding of interrelations in folate homeostasis, epigenetic variation, and flowering control in plants.
Journal Article
Improving oxidative damage, photosynthesis traits, growth and flower dropping of pepper under high temperature stress by selenium
by
Rajaii, Nafiseh
,
Haghighi, Maryam
,
Ramezani, Mohammad Reza
in
Antioxidants
,
Conductance
,
Flowers
2019
Pepper is mostly produced in greenhouses and fields in spring up to the end of summer. The reproductive stage coincides with high temperature of summer, which causes flowers to drop, leading to reduction in the yield, Se as a beneficial element can improved some stress indices. Control randomized design experiment was conducted to investigate the effect(s) of Se on heat stresses of pepper in control environment. Se in three concentrations of SeCl2 (4 (Se1), 6 (Se2) and 8 (Se3) mg L−1) was used at 35 ± 2 °C for 4 h a day, matching the high afternoon temperature. Growth, photosynthesis traits (Photosynthesis rate, transpiration and stomatal conductance), flower dropping and antioxidant changes were all measured. Results showed that Se1 decreased deleterious effects of heat stresses on vegetative traits (fresh and dry weight of fruit). Including dry weight of shoot, fresh and dry weight of root, and reproductive growth, such as Fresh weight and dry weight of fruit, flowers and fruit number. Photosynthesis rate, fruit antioxidant and phenol improved with the application of Se to heat stresses. POD and SOD activity increased, and MDA content decreased with Se application at the high temperature. Se also improved the P and S uptake. Generally, using 4 and 6 mg L−1 of Se could improve growth and physiological and phytochemical parameters of pepper and decrease the flower dropping at high temperature.
Journal Article
The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution
2017
The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.
Journal Article
ROS regulated reversible protein phase separation synchronizes plant flowering
by
Tang, Lingli
,
Zhai, Xiawan
,
Liu, Wei
in
631/45/2783
,
631/45/470/2284
,
Agrobacterium - genetics
2021
How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H
2
O
2
in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene
ANANTHA
to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.
Plants utilize naturally produced ROS in shoot apical stem cells as a developmental signal to trigger phase separation of TMF. The resulting transcriptional condensates repress expression of the floral identity gene to precisely time flowering.
Journal Article