Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Degree Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Granting Institution
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,575 result(s) for "Fluidized reactors."
Sort by:
Model-Based Quality, Exergy, and Economic Analysis of Fluidized Bed Membrane Reactors
In petroleum refineries, naphtha reforming units produce reformate streams and as a by-product, hydrogen (H2). Naphtha reforming units traditionally deployed are designed as packed bed reactors (PBR). However, they are restrained by a high-pressure drop, diffusion limitations in the catalyst, and radial and axial gradients of temperature and concentration. A new design using the fluidized bed reactor (FBR) surpasses the issues of the PBR, whereby the incorporation of the membrane can improve the yield of products by selectively removing hydrogen from the reaction side. In this work, a sequential modular simulation (SMS) approach is adopted to simulate the hydrodynamics of a fluidized bed membrane reactor (FBMR) for catalytic reforming of naphtha in Aspen Plus. The reformer reactor is divided into five sections of plug flow reactors and a continuous stirrer tank reactor with the membrane module to simulate the overall FBMR. Similarly, a fluidized bed reactor (FBR), without membrane permeation phenomenon, is also modelled in the Aspen Plus environment for a comparative study with FBMR. In FBMR, the continuous elimination of permeated hydrogen enhanced the production of aromatics compound in the reformate stream. Moreover, the exergy and economic analyses were carried out for both FBR and FBMR.
Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia
Date palm trees, being an important source of nutrition, are grown at a large scale in Saudi Arabia. The biomass waste of date palm, discarded of in a non-environmentally-friendly manner at present, can be used for biofuel generation through the fast pyrolysis technique. This technique is considered viable for thermochemical conversion of solid biomass into biofuels in terms of the initial investment, production cost, and operational cost, as well as power consumption and thermal application cost. In this study, a techno-economic analysis has been performed to assess the feasibility of converting date palm waste into bio-oil, char, and burnable gases by defining the optimum reactor design and thermal profile. Previous studies concluded that at an optimum temperature of 525 °C, the maximum bio-oil, char and gases obtained from pyrolysis of date palm waste contributed 38.8, 37.2 and 24% of the used feed stock material (on weight basis), respectively, while fluidized bed reactor exhibited high suitability for fast pyrolysis. Based on the pyrolysis product percentage, the economic analysis estimated the net saving of USD 556.8 per ton of the date palm waste processed in the pyrolysis unit. It was further estimated that Saudi Arabia could earn USD 44.77 million per annum, approximately, if 50% of the total date palm waste were processed through fast pyrolysis, with a payback time of 2.57 years. Besides that, this intervention will reduce 2029 tons of greenhouse gas emissions annually, contributing towards a lower carbon footprint.
An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings
Phosphorus (P) is a significant limiting nutrient which is essential for all forms of lives. However, phosphate rock reserves are depleting rapidly due to population growth. At the same time, several countries have imposed legislative regulations on P-release into surface waters due to eutrophication. Nutrient recovery from wastewater can facilitate a sustainable, cost-effective and environment-friendly source of phosphorus. Although P-recovery as struvite from wastewater has been widely studied for a long time, there still exists a lot of challenges for widespread full-scale implementation. This paper presents a comprehensive analysis of the current state of the technologies for phosphorus recovery in the form of struvite. Fluidized bed reactors (FBRs) are widely used compared to continuously stirred reactors for P-recovery as struvite because of different solid and liquid retention time. Commercially available technologies were reported to accomplish about 80% P-removal efficiencies with a reasonable P-recovery for the most of the cases. The struvite production rate of various technologies varies from 0.89 to 13.7 kg/kg influent P. Nevertheless, these technologies are associated with several shortcomings such as high operational costs, high energy consumption, and large footprint. Increasing efforts focusing on the development of sustainable and commercially feasible technologies are expected in this sector as P-recovery is considered to be the future of wastewater engineering.
Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors
Currently, most plastic waste stems from packaging materials, with a large proportion of this waste either discarded by incineration or used to derive fuel. Accordingly, there is growing interest in the use of pyrolysis to chemically recycle non-recyclable (i.e., via mechanical means) plastic waste into petrochemical feedstock. This comparative study compared pyrolysis characteristics of two types of reactors, namely fixed and fluidized bed reactors. Kinetic analysis for pyrolysis of SRF was also performed. Based on the kinetic analysis of the pyrolytic reactions using differential and integral methods applied to the TGA results, it was seen that the activation energy was lower in the initial stage of pyrolysis. This trend can be mainly attributed to the initial decomposition of PP components, which was subsequently followed by the decomposition of PE. From the kinetic analysis, the activation energy corresponding to the rate of pyrolysis reaction conversion was obtained. In conclusion, pyrolysis carried out using the fluidized bed reactor resulted in a more active decomposition of SRF. The relatively superior performance of this reactor can be attributed to the increased mass and heat transfer effects caused by fluidizing gases, which result in greater gas yields. Regarding the characteristics of liquid products generated during pyrolysis, it was seen that the hydrogen content in the liquid products obtained from the fluidized bed reactor decreased, leading to the formation of oils with higher molecular weights and higher C/H ratios, because the pyrolysis of SRF in the fluidized bed reactor progressed more rapidly than that in the fixed bed reactor.
Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis
Esters are versatile compounds with a wide range of applications in various industries due to their unique properties and pleasant aromas. Conventionally, the manufacture of these compounds has relied on the chemical route. Nevertheless, this technique employs high temperatures and inorganic catalysts, resulting in undesired additional steps to purify the final product by removing solvent residues, which decreases environmental sustainability and energy efficiency. In accordance with the principles of \"Green Chemistry\" and the search for more environmentally friendly methods, a new alternative, the enzymatic route, has been introduced. This technique uses low temperatures and does not require the use of solvents, resulting in more environmentally friendly final products. Despite the large number of studies published on the biocatalytic synthesis of esters, little attention has been paid to the reactors used for it. Therefore, it is convenient to gather the scattered information regarding the type of reactor employed in these synthesis reactions, considering the industrial field in which the process is carried out. A comparison between the performance of the different reactor configurations will allow us to draw the appropriate conclusions regarding their suitability for each specific industrial application. This review addresses, for the first time, the above aspects, which will undoubtedly help with the correct industrial implementation of these processes.
Multi-enzymatic Systems Immobilized on Chitosan Beads for Pomegranate Juice Treatment in Fluidized Bed Reactor: Effect on Haze-Active Molecules and Chromatic Properties
In this study, two different food-grade enzymes (i.e., bromelain from a pineapple stem (protease) and Pectinex® BE XXL (pectinase)) were successfully immobilized on chitosan beads and their application in pomegranate juice clarification was evaluated. The immobilization procedure was optimized for maximizing the specific activity of biocatalysts, and the best performance was reached using an immobilization solution containing 1.0 mg BSAeq /mL (for protease) and 1.8 mg BSAeq /mL (for pectinase). The biocatalysts were combined in a multi-enzymatic system and used in a fluidized bed reactor, varying the protease-to-pectinase ratio (1:2 or 1:4) and the treatment time (4 h or 8 h). The process carried out using the protease-to-pectinase ratio 1:2, for 8 h, was the most suitable in terms of immediate (− 49%) and potential (− 70%) turbidity depletion compared with the untreated juice, after 21 days. At the end of the storage period, this biotechnological approach allowed a significant reduction of haze-active molecules. All the enzymatically treated juices better preserved the anthocyanin pattern compared with the untreated juice over time. The best supplied treatment allowed better retaining the native chromatic properties of juice, preserving it from colloidal instability as well as from the possible related color degradation tendency.
Optimization of Calcium Fluoride Crystallization Process for Treatment of High-Concentration Fluoride-Containing Semiconductor Industry Wastewater
This study utilized a fluidized bed reactor (FBR) for fluoride removal from high-concentration fluoride-ion-containing simulated semiconductor industry wastewater and recovered high-purity CaF crystals. The effects of hydraulic retention time (HRT), pH, Ca to F ratio, upflow velocity, seed size and seed bed height were investigated by performing lab-scale batch experiments. Considering fluoride removal and CaF crystallization efficiency, 5 h HRT, pH 6, seed height of 50 cm and [Ca ]/[F ] ratio of 0.55 (mol/mol) were found to be optimum. The effect of the interaction between the important process parameters on fluoride removal was further analyzed using response surface methodology (RSM) experimental design. The results showed that all the individual parameters have a significant impact ( = 0.0001) on fluoride removal. SEM-EDX and FTIR analysis showed the composition of the crystals formed inside FBR. HR-XRD analysis confirmed that the crystalline structure of samples was mainly CaF . The results clearly demonstrated the feasibility of silica seed material containing FBR for efficient removal and recovery of fluoride as high-purity calcium fluoride crystals.
Numerical Simulation Study on the Gas–Solid Flow Characteristics of a Large-Scale Dual Fluidized Bed Reactor: Verification and Extension
Dual fluidized bed (DFB) reactor systems are widely used in gas–solid two-phase flow applications, whose gas–solid flow characteristics have a significant effect on the performance of many kinds of technologies. A numerical simulation model was established on the basis of a large-scale DFB reactor with a maximum height of 21.6 m, and numerical simulations focused on gas–solid flow characteristics were carried out. The effects of the superficial gas velocity of both beds and the static bed height and particle size on the distribution of the pressure and solid suspension density and the solid circulation rate were studied. The simulation results were in good agreement with the experimental data. With the strong support of the experimental data, the gas–solid flow characteristics of large-scale DFB reactors were innovatively evaluated in this numerical simulation study, which effectively makes up for the shortcomings of the current research. The results showed that the superficial gas velocity of both beds and the static bed height have different degrees of influence on the gas–solid flow characteristics. Specifically, for 282 μm particles, when the superficial gas velocity of both beds and the static bed height were 4.5 m/s, 2.5 m/s, and 0.65 m, respectively, under typical working conditions, the bottom pressure of the two furnaces was 3412.42 Pa and 2812.86 Pa, respectively, and the solid suspension density was 409.44 kg/m[sup.3] and 427.89 kg/m[sup.3], respectively. Based on the simulation results, the empirical formulas of the solid circulation rate were fitted according to different particle sizes. Under similar conditions, the solid circulation rates of particles with a particle size of 100 μm, 282 μm, 641 μm, and 1000 μm were 2.84–13.28, 0.73–4.91, 0.024–0.216, and 0.0026–0.0095 kg/(m[sup.2]s), respectively. It can be found that the influence of the particle size on the solid circulation rate is the most significant among all parameters.
Condition-Based Maintenance of an Anaerobic Reactor Using Artificial Intelligence
This paper proposes a condition-based maintenance system based on artificial intelligence for an online monitoring system of the support bed expansion in a 30-liter pilot-scale inverse fluidized bed reactor (IFBR). The main scope is to achieve a condition-based maintenance strategy using a single-level sensor for a biofilm inverse fluidizing bed as source for virtual sensors. The implementation of an artificial neural network was performed on an embedded electronic system (Raspberry Pi 4), both working together in real time. The signals estimated by the neural network are compared against the signals measured by the hardware sensors and, in case of detecting a failure in the physical measurement system, the artificial intelligence-based system then uses the signal estimated by the artificial neural network to maintain the correct operation of the IFBR. This system uses an artificial neural network to estimate the COD concentration of the effluent and the biogas production flow of a bioreactor, from the measurement of pH, the COD concentration of the influent, the inflow to the bioreactor and the signal coming from each of the conductivity sensors installed inside the reactor, which provide information about support media expansion in a pilot-scale inverse fluidized bed reactor. In addition, a fuzzy PI controller is presented, which was implemented in a Raspberry Pi electronic card, to regulate the COD concentration in the effluent of the bioreactor used as a case study.