Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,944 result(s) for "Fluvial sediments"
Sort by:
Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress
Deltas are resource rich, low-lying areas where vulnerability to flooding is exacerbated by natural and anthropogenically induced subsidence and geocentric sea-level rise, threatening the large populations often found in these settings. Delta 'drowning' is potentially offset by deposition of sediment on the delta surface, making the delivery of fluvial sediment to the delta a key balancing control in offsetting relative sea-level rise, provided that sediment can be dispersed across the subaerial delta. Here we analyse projected changes in fluvial sediment flux over the 21st century to 47 of the world's major deltas under 12 environmental change scenarios. The 12 scenarios were constructed using four climate pathways (Representative Concentration Pathways 2.6, 4.5, 6.0 and 8.5), three socioeconomic pathways (Shared Socioeconomic Pathways 1, 2 and 3), and one reservoir construction timeline. A majority (33/47) of the investigated deltas are projected to experience reductions in sediment flux by the end of the century, when considering the average of the scenarios, with mean and maximum declines of 38% and 83%, respectively, between 1990-2019 and 2070-2099. These declines are driven by the effects of anthropogenic activities (changing land management practices and dam construction) overwhelming the effects of future climate change. The results frame the extent and magnitude of future sustainability of major global deltas. They highlight the consequences of direct (e.g. damming) and indirect (e.g. climate change) alteration of fluvial sediment flux dynamics and stress the need for further in-depth analysis for individual deltas to aid in developing appropriate management measures.
Freeze‐Thaw Effects on Daily Sediment Transport in an Alpine River
Ongoing climate change and cryospheric degradation are intensifying sediment transport in cold mountain regions, leading to elevated sediment loads that adversely impact downstream areas. However, the influence of freeze‐thaw processes on daily catchment‐scale sediment transport in glaciated basins remains poorly understood. Here, we estimate the effect of freeze‐thaw processes on daily suspended sediment concentrations (SSC) in the Vent‐Rofental basin, Austria. Using Bayesian change‐point hierarchical regression, we assess the influence of streamflow, frozen ground extent (FGE), and diurnal freeze‐thaw cycles (FTCs) across three distinct freeze‐thaw states: thawing spring, thawed summer, and freezing autumn. While streamflow is the dominant driver of sediment transport, its effect is modulated by freeze‐thaw conditions and an interaction with temperature. FGE was found to reduce daily SSC, attributed to a reduction in the sediment contributing area. A discernible shift in suspended sediment dynamics is observed as the catchment transitions from frozen to thawed, marked by a change‐point when nearly all (97%) of the catchment is thawed. The thawed summer state exhibited the highest SSC due to elevated glacier melt. While the effect of diurnal FTCs on catchment‐scale fluvial sediment dynamics is ambiguous, a credible temperature‐adjusted effect in the thawing spring state may indicate enhanced sediment transport by amplifying snowmelt erosion. This study suggests that as glaciers retreat, snowmelt‐ and freeze‐thaw‐driven erosion, in addition to erosive rainfall, will become increasingly influential in determining sediment fluxes.
Late Quaternary formation of the Miaoli Tableland in northwest Taiwan, an interplay of tectonic uplift and fluvial processes dated by OSL
The “tablelands” in Taiwan are sedimentary terraces occurring in the foreland basin west of the Neogene mountain ranges. The Miaoli Tableland consists of elevated Late Quaternary sedimentary successions, representing a change from tidal to coastal and fluvial to eolian depositional environments. The present-day morphology is a result of combined processes, including differential tectonic uplift, ongoing fluvial aggradation, and incision. Selected deposits in 10 outcrops were sampled and studied by optical dating. The deposition of fluvial sediments started after the last interglacial (<100 ka) in the southeast of the tablelands. Uplift and sea-level lowering caused a base-level fall, resulting in a stepwise redeposition of the fluvial sediments. Additionally, enhanced remobilization of fluvial sediments occurred during the cold/dry climate during Marine Oxygen Isotope Stages (MIS) 4 and 2. The depositional ages of the coastal sediments enabled the estimation of long-term uplift rates of ca. 0.5 to 3.5 mm/yr. The eolian cover sediments yielded MIS 3 (east) to Holocene ages (west). Our results provide new insight into the interplay of climate, sea-level changes, remobilization of sediments, and tectonism leading to tableland formation during the Late Quaternary.
The effect of parent rocks on river sediment composition and implication for regional tectono-magmatic events: a case from two tributaries of the Songhua River, NE China
Modern fluvial sediments provide important information about source-to-sink process and regional tectono-magmatic events in the source area, but many factors, e.g., chemical weathering, sedimentary cycles and source-rock types, can interfere with the establishment of the source-sink system. The Lalin River (LR) and the Jilin Songhua River (JSR) are two important tributaries of the Songhua River in the Songnen Plain in NE China. They have similar flow direction, topography and identical climate backgrounds, but have notably different parent-rock types in the headwater, which provides an opportunity to explore the influencing factors of river sediment composition. To this end, the point bar sediments in the two rivers were sampled for an analysis of geochemistry (including element and Sr-Nd isotopic ratios), heavy mineral and detrital zircon U-Pb dating. The results are indicative of the fact that the two rivers have the similar geochemical composition (e.g., elements and Sr isotopes) as well as chemical weathering (CIA = 51.41–57.60, CIW = 59.68–66.11, PIA = 51.95–60.23, WIP = 56.00–65.47, Rb/Sr = 0.38–0.42) and recycling (SiO2/Al2O3 = 5.79 and 5.03, ICV = 1.0 and 1.2, CIA/WIP = 0.81–1.03) characteristics, showing a major control of climate on the low-level weathering and recycling of the river sediments. However, there are significant differences in the detrital zircon U-Pb age (a significant Mesozoic age peak for the LR but an additional Precambrian peak for the JSR), Nd isotope ratio (−6.2812–8.5830 and −8.1149–10.2411 for the LR and the JSR, respectively) and to a certain extent heavy mineral composition (e.g., for the < 63 μm fraction, a dominance of hornblende and magnetite in the LR, but haematite-limonite in the JSR) in the two river sediments, indicating that source rocks largely control the composition of the river sediments. Some of the major tectono-magmatic events (e.g., crustal growth and cratonisation of the North China Craton, closure of the Paleo-Asian Ocean, subduction and rollback of the Paleo-Pacific plate) occurring in the eastern Songnen Plain are well documented in the JSR sediments but not in the LR, the difference of which is largely regulated by the source rocks in the source area.
Sediment Budget and Net Sediment Transport on a Coast Dominated by Waves and Offshore Currents: A Case Study on the Ishikawa Coast and Its Surrounding Areas in Japan
This study discusses the coastal sediment budget for the Ishikawa coast using 12 years of observational datasets; it involves an understanding the local and regional sediment dynamics, the intensity of the transport processes in the region, and sediment supply from a local river. Although alongshore sediment transport and sediment budgets have been analyzed in previous studies, only a few conducted cross-shore sediment transport evaluations. The concentration of suspended sediments will be determined in this study, taking into account the influence of waves that are associated with the coastal current. The cross-shore sediment transport using sediment budget analysis indicated that the net alongshore sediment transport directions in the surf and offshore zones are opposite on the Ishikawa coast. The increase in the sediment budget of the surf zone can be attributed to the river sediment supply and longshore sediment transport inflow. Because of the significant outflow components of longshore and cross-shore sediment transports, the offshore zone budget showed a decreasing trend. A detailed sensitivity study was performed by varying the input parameters, in order to determine the possible ranges of net transport rates and sediment transport to the adjacent coasts. The results demonstrated the possibility of a clockwise residual sediment circulation. Our method can be used to analyze the alongshore sediment transport for other coasts and supplement future studies on coastal sedimentology and sediment budgets.
Sediment analysis and water quality assessment in the Pixquiac basin: drinking water supply of Xalapa city (Veracruz, Mexico)
Fluvial sediment analysis and water quality assessment are useful to identify anthropic and natural sources of pollution in rivers. Currently, there is a lack of information about water quality in the Pixquiac basin (Veracruz state, Mexico), and this scarcity of data prevents authorities to take adequate measures to protect water resources. The basin is a crucial territory for Xalapa, the capital city of Veracruz state, as it gets 39% of its drinkable water from it. This research analyzed 10 physicochemical parameters and 12 metal concentrations in various rivers and sources during two seasons. Dissolved metals presented average concentrations (µg/L): Al (456.25) > Fe (199.4) > Mn (16.86) > Ba (13.8) > Zn (7.6) > Cu (1.03) > Pb (0.27) > As (0.12) > Ni (0.118) (Cd, Cr and Hg undetectable). Metals in sediment recorded average concentrations (ppm): Fe (38575) > Al (38425) > Mn (460) > Ba (206.2) > Zn (65.1) > Cr (29.8) > Ni (20.9) > Cu (16.4) > Pb (4.8) > As (2.1) (Cd and Hg undetectable). During the rainy season, Water Quality Index (WAWQI) classified stations P17 and P18’s water as “unsuitable for drinking” with values of 110.4 and 117.6. Enrichment factor (EF) recorded a “moderate enrichment” of Pb in sediment in P24. Pollution was mainly explained by wastewater discharges in rivers but also because of erosion and rainfall events. Statistical analysis presented strong relationships between trace and major metals which could explain a common natural origin for metals in water and sediment: rock lixiviation.
A quantitative vulnerability function for fluvial sediment transport
In quantitative risk assessment, risk is expressed as a function of hazard, elements at risk exposed, and vulnerability. Vulnerability is defined as the expected degree of loss for an element at risk as a consequence of a certain event, following a natural-scientific approach combined with economic methods of loss appraisal. The resulting value ranges from 0 (no damage) to 1 (complete destruction). With respect to torrent processes, i.e., fluvial sediment transport, this concept of vulnerability—though widely acknowledged—did not result in sound quantitative relationships between process intensities and associated degrees of loss so far, even if considerable loss occurred during recent years. To close this gap and establish this relationship, data from three well-documented torrent events in the Austrian Alps were used to derive a quantitative vulnerability function applicable to residential buildings located on torrent fans. The method applied followed a spatially explicit empirical approach within a GIS environment and was based on process intensities, the spatial characteristics of elements at risk, and average reconstruction values on a local scale. Additionally, loss data were collected from responsible administrative bodies and analysed on an object level. The results suggest a modified Weibull distribution to fit best to the observed damage pattern if intensity is quantified in absolute values, and a modified Frechet distribution if intensity is quantified relatively in relation to the individual building height. Additionally, uncertainties resulting from such an empirical approach were studied; in relation to the data quality a 90% confidence band was found to represent the data range appropriately. The vulnerability relationship obtained allows for an enhanced quantification of torrent risk, but also for an inclusion in comprehensive vulnerability models including physical, social, economic, and institutional vulnerability. As a result, vulnerability to mountain hazards might decrease in the future.
Multi-Method Luminescence Dating of Old Fluvial Sediments from Northern Tian Shan, China
At the eastern tip of Anjihai anticline on the northern piedmont of Tian Shan (northwest China), deformed fluvial deposits have recorded active folding since the Pleistocene, but the absence of accurate ages makes it difficult to evaluate the anticline's shortening rate. Geological studies ascribed the fluvial strata to the early Pleistocene, which poses potential challenges for luminescence dating. In this study, multi-methods luminescence dating was applied to a fluvial sand sample taken from the sandy bed of the deformed basal strata. Single grain post-Infrared Infrared Stimulated Luminescence (pIRIR) and multiple-aliquot-regenerative (MAR) dose along with multiple-elevated-temperature pIRIR (MET-pIRIR) procedures were applied to determine the paleodose of the sample. The methodological uncertainties, such as thermal transfer and initial sensitivity change, were treated by increasing the test dose and performing dose recovery test. With consideration of the potential partial bleaching and anomalous fading, various statistical metrics were applied to the D values determined by using the single grain pIRIR , single grain pIRIR and MAR-MET-pIRIR signals. The minimum age model (MAM) D values are 11% – 17% lower than the central age model (CAM) D values in general, and the MAM D values determined by the single grain pIRIR procedures are underestimated by more than 40% when compared with those determined by MAR-MET-pIRIR procedure. The MAM MAR-MET-pIRIR D of 811 ± 44 Gy results in a burial age of 284 ka for the basal deformed fluvial strata, which is much younger than the proposed early Pleistocene age.
Sediment transport at the river confluences: few observations from a sub-tropical plateau fringe river of eastern India
Confluences are often attributed by abrupt change in the load transport and encompass significant regional differences. Tributary watersheds of the Chotonagpur plateau fringe fans are widely reported to be the source of premier sediment yields causing amplification of sediment load in the trunk river. In this direction this article scrutinizes the role of tributaries on sediment transport at 11 confluence locations along 86.4 km stretched river Bakreshwar. The work revolves around two fundamental questions- How do tributaries contribute sediment load to the main river respective to their catchment size, length, runoff and sediment yield volume? and how do tributaries' interaction with the trunk stream influence the longitudinal continuum of sediment load in the receiving river? The study affirms that the junctions represent locations of abrupt change in the longitudinal gradient of sediment load. Size and length of the tributaries relative to the main stream have explicit controls on the post-confluence change in sediment load. Tributary watershed sediment yield is the foremost factor for amplifications of sediment load and morphological complexities at and downstream of the junctions. This work is a preliminary attempt and can hopefully stimulate ideas for fruitful and coherent scientific inquiry on river confluences particularly for Indian circumstances.