Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
148,703 result(s) for "Food Contamination"
Sort by:
Public health risks related to food safety issues in the food market: a systematic literature review
Background Food safety in the food market is one of the key areas of focus in public health, because it affects people of every age, race, gender, and income level around the world. The local and international food marketing continues to have significant impacts on food safety and health of the public. Food supply chains now cross multiple national borders which increase the internationalization of health risks. This systematic review of literature was, therefore, conducted to identify common public health risks related to food safety issues in the food market. Methods All published and unpublished quantitative, qualitative, and mixed method studies were searched from electronic databases using a three step searching. Analytical framework was developed using the PICo (population, phenomena of interest, and context) method. The methodological quality of the included studies was assessed using mixed methods appraisal tool (MMAT) version 2018. The included full-text articles were qualitatively analyzed using emergent thematic analysis approach to identify key concepts and coded them into related non-mutually exclusive themes. We then synthesized each theme by comparing the discussion and conclusion of the included articles. Emergent themes were identified based on meticulous and systematic reading. Coding and interpreting the data were refined during analysis. Results The analysis of 81 full-text articles resulted in seven common public health risks related with food safety in the food market. Microbial contamination of foods, chemical contamination of foods, food adulteration, misuse of food additives, mislabeling, genetically modified foods (GM foods), and outdated foods or foods past their use-by dates were the identified food safety–related public health risks in the food market. Conclusion This systematic literature review identified common food safety–related public health risks in the food market. The results imply that the local and international food marketing continues to have significant impacts on health of the public. The food market increases internationalization of health risks as the food supply chains cross multiple national borders. Therefore, effective national risk-based food control systems are essential to protect the health and safety of the public. Countries need also assure the safety and quality of their foods entering international trade and ensure that imported foods conform to national requirements.
Listeria monocytogenes Persistence in Food-Associated Environments: Epidemiology, Strain Characteristics, and Implications for Public Health
Over the last 10 to 15 years, increasing evidence suggests that persistence of Listeria monocytogenes in food processing plants for years or even decades is an important factor in the transmission of this foodborne pathogen and the root cause of a number of human listeriosis outbreaks. L. monocytogenes persistence in other food-associated environments (e.g., farms and retail establishments) may also contribute to food contamination and transmission of the pathogen to humans. Although L. monocytogenes persistence is typically identified through isolation of a specific molecular subtype from samples collected in a given environment over time, formal (statistical) criteria for identification of persistence are undefined. Environmental factors (e.g., facilities and equipment that are difficult to clean) have been identified as key contributors to persistence; however, the mechanisms are less well understood. Although some researchers have reported that persistent strains possess specific characteristics that may facilitate persistence (e.g., biofilm formation and better adaptation to stress conditions), other researchers have not found significant differences between persistent and nonpersistent strains in the phenotypic characteristics that might facilitate persistence. This review includes a discussion of our current knowledge concerning some key issues associated with the persistence of L. monocytogenes, with special focus on (i) persistence in food processing plants and other food-associated environments, (ii) persistence in the general environment, (iii) phenotypic and genetic characteristics of persistent strains, (iv) niches, and (v) public health and economic implications of persistence. Although the available data clearly indicate that L. monocytogenes persistence at various stages of the food chain contributes to contamination of finished products, continued efforts to quantitatively integrate data on L. monocytogenes persistence (e.g., meta-analysis or quantitative microbial risk assessment) will be needed to advance our understanding of persistence of this pathogen and its economic and public health impacts.
Low-Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens
Foods and food ingredients with low water activity (a(w)) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-a(w) foods and in dry food processing and preparation environments. Foodborne pathogens in low-a(w) foods often exhibit an increased tolerance to heat and other treatments that are lethal to cells in high-a(w) environments. It is virtually impossible to eliminate these pathogens in many dry foods or dry food ingredients without impairing organoleptic quality. Control measures should therefore focus on preventing contamination, which is often a much greater challenge than designing efficient control measures for high-a(w) foods. The most efficient approaches to prevent contamination are based on hygienic design, zoning, and implementation of efficient cleaning and sanitation procedures in the food processing environment. Methodologies to improve the sensitivity and speed of assays to resuscitate desiccated cells of foodborne pathogens and to detect them when present in dry foods in very low numbers should be developed. The goal should be to advance our knowledge of the behavior of foodborne pathogens in low-a(w) foods and food ingredients, with the ultimate aim of developing and implementing interventions that will reduce foodborne illness associated with this food category. Presented here are some observations on survival and persistence of foodborne pathogens in low-a(w) foods, selected outbreaks of illnesses associated with consumption of these foods, and approaches to minimize safety risks.
Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Aflatoxin Contamination: An Overview on Health Issues, Detection and Management Strategies
Aflatoxins (AFs) represent one of the main mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, with the most prevalent and lethal subtypes being AFB1, AFB2, AFG1, and AFG2. AFs are responsible for causing significant public health issues and economic concerns that affect consumers and farmers globally. Chronic exposure to AFs has been linked to liver cancer, oxidative stress, and fetal growth abnormalities among other health-related risks. Although there are various technologies, such as physical, chemical, and biological controls that have been employed to alleviate the toxic effects of AF, there is still no clearly elucidated universal method available to reduce AF levels in food and feed; the only mitigation is early detection of the toxin in the management of AF contamination. Numerous detection methods, including cultures, molecular techniques, immunochemical, electrochemical immunosensor, chromatographic, and spectroscopic means, are used to determine AF contamination in agricultural products. Recent research has shown that incorporating crops with higher resistance, such as sorghum, into animal feed can reduce the risk of AF contamination in milk and cheese. This review provides a current overview of the health-related risks of chronic dietary AF exposure, recent detection techniques, and management strategies to guide future researchers in developing better detection and management strategies for this toxin.