Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32,821 result(s) for "Food Storage"
Sort by:
Household storage, surplus and supra-household storage in prehistoric and protohistoric societies of the Western Mediterranean
The objective of this paper is to assess foodstuff storage throughout Recent Prehistory (5600-50 BCE) from the standpoint of the three different types (household, surplus and supra-household) identified in the northeast of the Iberian Peninsula. The volumetric data of the underground silos serves as a proxy to evaluate the link between them and the agricultural systems and technological changes. The study also assesses the ability, and specifically, the will of the ancient communities of the northeastern Iberia to generate domestic and extra-domestic surpluses.
To culture or not to culture: careful assessment of metabarcoding data is necessary when evaluating the microbiota of a modified-atmosphere-packaged vegetarian meat alternative throughout its shelf-life period
Background As the increased consumption of ready-to-eat meat alternatives is a fairly recent trend, little is known about the composition and dynamics of the microbiota present on such products. Such information is nonetheless valuable in view of spoilage and food safety prevention. Even though refrigeration and modified-atmosphere-packaging (MAP) can extend the shelf-life period, microbial spoilage can still occur in these products. In the present study, the microbiota of a vegetarian alternative to poultry-based charcuterie was investigated during storage, contrasting the use of a culture-dependent method to a culture-independent metagenetic method. Results The former revealed that lactic acid bacteria (LAB) were the most abundant microbial group, specifically at the end of the shelf-life period, whereby Latilactobacillus sakei was the most abundant species. Metabarcoding analysis, in contrast, revealed that DNA of Xanthomonas was most prominently present, which likely was an artifact due to the presence of xanthan gum as an ingredient, followed by Streptococcus and Weissella . Conclusions Taken together, these results indicated that Lb. sakei was likely the most prominent specific spoilage organisms (SSO) and, additionally, that the use of metagenetic analysis needs to be interpreted with care in this specific type of product. In order to improve the performance of metagenetics in food samples with a high DNA matrix but a low bacterial DNA load, selective depletion techniques for matrix DNA could be explored.
Antifreeze proteins produced by Antarctic yeast from the genus Glaciozyma as cryoprotectants in food storage
Synthesis of antifreeze proteins (AFPs) is one of the adaptations of psychrophilic yeast to live in cold environments. AFPs demonstrate thermal hysteresis (TH) activity and inhibit the recrystallization of ice (IRI) during periodic temperature fluctuations. In this study, the Antarctic yeast strain 186, identified as Glaciozyma martinii , was found to synthesize an extracellular, glycosylated ~27 kDa ice-binding protein (GmAFP) exhibiting IRI activity. It is the first evidence of AFP secretion by the psychrophilic yeast Glaciozyma martinii . To scale up protein production, a synthetic gene from a closely related cold-adapted species, Glaciozyma antarctica , was expressed in Pichia pastoris GS115 strain. The recombinant 26.57 kD protein (GaAFP) displayed IRI activity and a cryoprotective effect in food storage. The addition of GaAFP to the stored frozen vegetables and fruits (carrot, kohlrabi, and blueberry) markedly reduced the drip loss during the thawing process and positively affected their structure, with an effect similar to glycerol. Moreover, GaAFP increased the cell survival of Saccharomyces cerevisiae after freezing. The insights from this study provided proof that AFPs from natural sources may serve as competent biodegradable, eco-friendly, non-cytotoxic and biocompatible substitutes for traditional cryoprotectants in enhancing the quality of frozen foods.
Machine learning-based optimal temperature management model for safety and quality control of perishable food supply chain
The management of a food supply chain is difficult and complex because of the product's short shelf-life, time-sensitivity, and perishable nature which must be carefully considered to minimize food waste. Temperature-controlled perishable food supply chain provides the highly crucial facilities necessary to maintain the quality and safety of the product. The storage temperature is the most vital factor in maintaining both the quality and shelf-life of a perishable food. Adequate storage temperature control ensures that perishable foods are transported to the end-users in good quality and safe to consume. This paper presents perishable food storage temperature control through mathematical optimal control model where the storage temperature is regarded as the control variable and the deterioration of the perishable food’s quality follows the first-order reaction. The optimal storage temperature for a single perishable food is determined by applying the Pontryagin's maximum principle to solve the optimal control model problem. For multi-temperature commodities supply chain, an unsupervised machine learning (ML) method, called k -means clustering technique is used to determine the temperature clusters for a range of perishables. Based on descriptive analysis, it is observed that the k -means clustering technique is effective in identifying the best suitable storage temperature clusters for quality control of multi-commodity supply chain.
Interactions of Mutiple Biological Fields in Stored Grain Ecosystems
Biological entities such as fungi in stored grain evolve and interact with the environment in similar fashions as physical fields. An experiment was conducted to study the behavior of the biological field of fungi in stored grain, as well as the interactions between the biological field of fungi and the physical fields of temperature and moisture. A framework of the biological field is presented to describe biological systems in which multiple biological entities co-exist and interact among themselves and with the surrounding environment. The proposed biological field describes the spatio-temporal distribution of a biological entity and its ability of influencing (or being influenced by) the surrounding biotic and abiotic entities through exchange of energy, matter, and/or information. The strength of a biological field of fungi was quantified as the rate of energy conversion by fungi from grain starch to heat. The experimental data showed that the strength of biological field of fungi in stored grain varied in both space and time, with the maximum field strength of 120-133 W m occurred at the location where the biological field of fungi interacted strongly with the temperature and moisture fields.
Postharvest practices, challenges and opportunities for grain producers in Arequipa, Peru
Little is known about the major issues leading to postharvest losses in Peru, which are estimated to be 15-27%. We surveyed 503 farmers from the lowlands and Andean regions of Arequipa to learn more about the major grains produced and issues encountered during drying and storage. Rice, common bean, and quinoa were the most grown crops in the lowlands while starchy maize was the most cultivated crop in the highlands. Most farmers (90%) dried their crops in-field directly on the ground, which exposes them to rodents, birds, and insect pests. The majority of farmers (92%) used subjective methods to assess grain moisture content. About 77% of farmers identified insects as a major challenge during storage but only 44% said they used preventive measures such as the application of insecticides. Among farmers who stored grain, the main reason was for household consumption (61%); while among those who did not store, the main reason was the need for immediate cash at harvest (75%). Farmers who experienced insect problems, who stored seed or grain for sale, who stored longer, or farmers from the lowlands were more likely to apply insecticides on their stored products. These findings provide an opportunity for researchers, development organizations, and government agencies to improve postharvest handling and storage in Arequipa by disseminating drying technologies, moisture assessment tools and hermetic storage solutions among farmers.
Fully Biodegradable Packaging Films for Fresh Food Storage Based on Oil‐Infused Bacterial Cellulose
Fully biodegradable packaging materials are demanded to resolve the issue of plastic pollution. However, the fresh food storage performance of biodegradable materials is generally much lower than that of plastics due to their high permeability, microbial friendliness, and limited stretchability and transparency. Here a biodegradable packaging material is reported with high fresh food storage performance based on an oil‐infused bacterial cellulose (OBC) porous film. The oil infusion significantly improved cellulose's food‐keeping performance by reducing its gas permeability, increasing its stretchability and transparency, and enabling the active release of green vapor‐phase preservative molecules, while maintaining its intrinsically high degradability. Strawberries stored in a container with the OBC lid at 23 °C after 5 days exhibited a moldy rate of 0%, in contrast to the 100% moldy rate of those stored by poly(ethylene). Enhanced storage performance is also obtained on tomatoes, pork, and shrimp. The OBC film is naturally degraded after being buried in wet soil at 30 °C for 9 days, identical to the degradation rate of bacterial cellulose. The liquid seal strategy broadly applies to different celluloses, providing a general option for developing cellulose‐based biodegradable packaging materials. A biodegradable packaging material with changeable properties is developed by combining a biocompatible oil with an intrinsically degradable bacterial cellulose film. The dynamic oil alters cellulose's optical, mechanical, barrier, and antimicrobial properties in the favorable direction of fresh food storage, leading to improved food‐keeping performance compared with commercial polyethylene plastics while being quickly degradable.
Effect of Stored Humidity and Initial Moisture Content on the Qualities and Mycotoxin Levels of Maize Germ and Its Processing Products
With high fat and protein content, maize germ is easily infected with fungus and mycotoxins during its storage. The qualities and safety of germ and its processing products may be affected by the storage. However, studies on the effect of storage on quality and polluted mycotoxin level of maize germ are limited. In this study, maize germ was stored with different initial moisture contents (5.03, 9.07, 11.82 and 17.97%) or at different relative humidity (75, 85 and 95%) for 30 days. The quality indices of germ (moisture content and crude fat content) and their produced germ oils (color, acid value and peroxide value) as well as the zearalenone (ZEN) and deoxynivalenol (DON) levels of germ, oils and meals were analyzed. Results showed that maize germ with high initial moisture contents (11.82, 17.97%) or kept at high humidity (95%) became badly moldy at the end of storage. Meanwhile, the qualities of these germ and oils showed great changes. However, the ZEN and DON contents of this maize germ, oils and meals stayed at similar levels (p < 0.05). Therefore, the storage could produce influence on the qualities of germ and oils, but showed limited effect on the DON and ZEN levels of germ and their processing products. According to this study, the storage condition of germ with no more than 9% moisture content and no higher than 75% humidity was recommended. This study would be benefit for the control of germ qualities and safety during its storage.
Characterization of the physical properties of electron-beam-irradiated white rice and starch during short-term storage
Electron-beam irradiation (EBI) is a cold sterilization technology used in the irradiation processing of food, including rice. Herein, the effects of EBI on the swelling power, color, pasting, and sensory properties of white rice after short-term storage were analyzed. Samples were electron-beam irradiated at 0, 2, 4, 6, or 8 kGy and stored at 25 °C or 37 °C for up to 75 days. Results showed that swelling power and major pasting viscosities (including peak, breakdown, and setback viscosities) at both storage temperatures decreased with increased irradiation dose. Negative correlations were also observed between the major viscosities of pasting properties and irradiation dose at both storage temperatures. During sensory evaluation, extremely low scores for rice hardness, appearance, taste, and overall acceptability were obtained for rice subjected to high EBI dose (>4 kGy). However, rice stored at 37 °C showed lower performance than rice at 25 °C in terms of the abovementioned parameters. By contrast, the sensory properties at irradiation doses between 2 and 4 kGy were better than those of the control group at both storage temperatures. All these findings indicated the potential of low-dose (<4 kGy) EBI as pretreatment for improving the quality of white rice during storage.
Oxysterols in stored powders as potential health hazards
Cholesterol oxidation products (COPs) have greater biological activity than cholesterol itself. Oxysterols reduce the nutritional value of foods and exhibit a wide range of biological activity, including pro-oxidant, carcinogenic, and cytotoxic properties. The most commonly detected oxysterols in foods are 7α-HC, 7β-HC, a product of their dehydrogenation 7-KC and α-CE, β-CE. The main dietary sources of oxysterols are eggs and egg-derived products, thermally processed milk and milk-based products, fried meat. This study aimed to measure the amount of cholesterol oxidation products in milk powder, egg powder and milk–egg powder during 24 months of storage. The changes in the selected oxysterols (determined by gas chromatography) were recorded. In milk powder, after the production process, the amount of cholesterol was 0.2 g 100 g −1 fat and in egg powder it was 3.4 g 100 g −1 . After 6 months of storage, the dominant oxysterol in milk and egg powder was 7α-HC and in milk–egg powder it was 7-KC. After the storage period, oxysterols in powdered milk reached 1.81% of total cholesterol.  The most stable cholesterol was in the milk–egg mixture and its oxidation was the slowest. This study showed the presence of COPs in milk powder, egg powder and milk–egg powder and the effect of storage on cholesterol oxidation.