Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
143,010
result(s) for
"Food chains"
Sort by:
Food webs
Presents food webs and how they chart the natural processes of survival.
Communities and ecosystems
2002,2013
Most of the earth's terrestrial species live in the soil. These organisms, which include many thousands of species of fungi and nematodes, shape aboveground plant and animal life as well as our climate and atmosphere. Indeed, all terrestrial ecosystems consist of interdependent aboveground and belowground compartments. Despite this, aboveground and belowground ecology have been conducted largely in isolation. This book represents the first major synthesis to focus explicitly on the connections between aboveground and belowground subsystems--and their importance for community structure and ecosystem functioning.
David Wardle integrates a vast body of literature from numerous fields--including population ecology, ecosystem ecology, ecophysiology, ecological theory, soil science, and global-change biology--to explain the key conceptual issues relating to how aboveground and belowground communities affect one another and the processes that each component carries out. He then applies these concepts to a host of critical questions, including the regulation and function of biodiversity as well as the consequences of human-induced global change in the form of biological invasions, extinctions, atmospheric carbon-dioxide enrichment, nitrogen deposition, land-use change, and global warming.
Through ambitious theoretical synthesis and a tremendous range of examples, Wardle shows that the key biotic drivers of community and ecosystem properties involve linkages between aboveground and belowground food webs, biotic interaction, the spatial and temporal dynamics of component organisms, and, ultimately, the ecophysiological traits of those organisms that emerge as ecological drivers. His conclusions will propel theoretical and empirical work throughout ecology.
Food chains and webs
Takes a look at the feeding relationships of different types of organisms, from producers to consumers.
Microbial and animal nutrient limitation change the distribution of nitrogen within coupled green and brown food chains
by
Schmitz, Oswald J.
,
Leroux, Shawn J.
,
Buchkowski, Robert W.
in
aboveground–belowground interactions
,
Animal behavior
,
Animals
2019
Numerous biotic mechanisms can control ecosystem nutrient cycling, but their full incorporation into ecological models or experimental designs can result in inordinate complexity. Including organismal nutrient limitation in models of highly dimensional systems (i.e., those with many nutrient pools/species) presents a critical challenge. We evaluate the importance of explicitly considering microbial and animal nutrient limitation to predict ecosystem nitrogen cycling across plant-based and detritus-based food chains. We investigate how eight factorial scenarios of microbial, herbivore, and microbi-detritivore (i.e., omnivores consuming microbes and detritus) nitrogen or carbon limitation alter the stocks and flows of nitrogen in an ecosystem model. We used a combination of partial derivatives of model equilibrium solutions and numerical simulations using randomly drawn parameter sets to explore the impact of each nutrient limitation scenario on nutrient stocks and flows. We show that switching microbes, herbivores, or microbi-detritivores from nitrogen to carbon limitation consistently altered the ecosystem response to changes in inorganic nitrogen supply, plant C:N ratio, and microbial C:N ratio. Organism nutrient limitation changed ecosystem nitrogen flows by altering the feedbacks between the abiotic and biotic pools. For example, microbi-detritivore nutrient limitation determined whether the microbial response to changes in inorganic nitrogen supply and C:N ratios was dependent on the size of detrital carbon or detrital nitrogen pool. Such correlated responses among biotic and abiotic pools set up a network of predictable changes in ecosystem properties sensitive to organism nutrient limitation. Scenarios with microbial limitation were generally sufficient to capture the suite of ecosystem responses to increasing inorganic nitrogen supply, while scenarios with animal limitation added new behavior whenever C:N ratios changed. We make the case for explicitly considering both microbial and animal nutrient limitation when predicting the flow and distribution of nitrogen across green and brown food chains.
Journal Article
The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture?
by
Williams, Helén
,
Wikström, Fredrik
,
Molina-Besch, Katrin
in
Civil Engineering
,
Earth and Environmental Science
,
Empirical analysis
2019
Purpose
Due to the urgency and the magnitude of the environmental problems caused by food supply chains, it is important that the recommendations for packaging improvements given in life cycle assessment (LCA) studies of food rest on a balanced consideration of all relevant environmental impacts of packaging. The purpose of this article is to analyse the extent to which food LCAs include the indirect environmental impact of packaging in parallel to its direct impact. While the direct environmental impact of food packaging is the impact caused by packaging materials’ production and end-of-life, its indirect environmental impact is caused by its influence on the food product’s life cycle, e.g. by its influence on food waste and on logistical efficiency.
Methods
The article presents a review of 32 food LCAs published in peer-reviewed scientific journals over the last decade. The steps of the food product’s life cycle that contribute to the direct and indirect environmental impacts of packaging provide the overall structure of the analytical framework used for the review. Three aspects in the selected food LCAs were analysed: (1) the defined scope of the LCAs, (2) the sensitivity and/or scenario analyses and (3) the conclusions and recommendations.
Results and discussion
While in packaging LCA literature, there is a trend towards a more systematic consideration of the indirect environmental impact of packaging, it is unclear how food LCAs handle this aspect. The results of the review show that the choices regarding scope and sensitivities/scenarios made in food LCAs and their conclusions about packaging focus on the direct environmental impact of packaging. While it is clear that not all food LCAs need to analyse packaging in detail, this article identifies opportunities to increase the validity of packaging-related conclusions in food LCAs and provides specific recommendations for packaging-related food LCA methodology.
Conclusions
Overall, we conclude that the indirect environmental impact of packaging is insufficiently considered in current food LCA practice. Based on these results, this article calls for a more systematic consideration of the indirect environmental impact of packaging in future food LCAs. In addition, it identifies a need for more packaging research that can provide the empirical data that many food LCA practitioners currently lack. In particular, LCA practitioners would benefit if there were more knowledge and data available about the influence of certain packaging characteristics (e.g. shape, weight and type of material) on consumer behaviour.
Journal Article
Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data
by
Miller, Michaela E
,
Kroon, Frederieke J
,
Hamann, Mark
in
Additives
,
Aquatic Organisms - metabolism
,
Bioaccumulation
2020
Microplastic (MP) contamination has been well documented across a range of habitats and for a large number of organisms in the marine environment. Consequently, bioaccumulation, and in particular biomagnification of MPs and associated chemical additives, are often inferred to occur in marine food webs. Presented here are the results of a systematic literature review to examine whether current, published findings support the premise that MPs and associated chemical additives bioaccumulate and biomagnify across a general marine food web. First, field and laboratory-derived contamination data on marine species were standardised by sample size from a total of 116 publications. Second, following assignment of each species to one of five main trophic levels, the average uptake of MPs and of associated chemical additives was estimated across all species within each level. These uptake data within and across the five trophic levels were then critically examined for any evidence of bioaccumulation and biomagnification. Findings corroborate previous studies that MP bioaccumulation occurs within each trophic level, while current evidence around bioaccumulation of associated chemical additives is much more ambiguous. In contrast, MP biomagnification across a general marine food web is not supported by current field observations, while results from the few laboratory studies supporting trophic transfer are hampered by using unrealistic exposure conditions. Further, a lack of both field and laboratory data precludes an examination of potential trophic transfer and biomagnification of chemical additives associated with MPs. Combined, these findings indicate that, although bioaccumulation of MPs occurs within trophic levels, no clear sign of MP biomagnification in situ was observed at the higher trophic levels. Recommendations for future studies to focus on investigating ingestion, retention and depuration rates for MPs and chemical additives under environmentally realistic conditions, and on examining the potential of multi-level trophic transfer for MPs and chemical additives have been made.
Journal Article
Tundra food webs in action
by
Fleisher, Paul, author
in
Tundra ecology Juvenile literature.
,
Food chains (Ecology) Juvenile literature.
,
Tundra ecology.
2014
\"Moose, lemmings, owls, wolves, bumblebees, and grizzly bears are some of the many animals that make up a tundra food web. But did you know that worms, beetles, mushrooms, and bacteria break down dead plants and animals into nutrients? Or that tundra animals depend on berries, seeds, and other plants to stay alive?\"--Back cover.
Predator-induced collapse of niche structure and species coexistence
by
Pringle, Robert M.
,
Gotanda, Kiyoko M.
,
Hutchinson, Matthew C.
in
631/158/2178
,
631/158/672
,
631/158/853
2019
Biological invasions are both a pressing environmental challenge and an opportunity to investigate fundamental ecological processes, such as the role of top predators in regulating biodiversity and food-web structure. In whole-ecosystem manipulations of small Caribbean islands on which brown anole lizards (
Anolis sagrei
) were the native top predator, we experimentally staged invasions by competitors (green anoles,
Anolis smaragdinus
) and/or new top predators (curly-tailed lizards,
Leiocephalus carinatus
). We show that curly-tailed lizards destabilized the coexistence of competing prey species, contrary to the classic idea of keystone predation. Fear-driven avoidance of predators collapsed the spatial and dietary niche structure that otherwise stabilized coexistence, which intensified interspecific competition within predator-free refuges and contributed to the extinction of green-anole populations on two islands. Moreover, whereas adding either green anoles or curly-tailed lizards lengthened food chains on the islands, adding both species reversed this effect—in part because the apex predators were trophic omnivores. Our results underscore the importance of top-down control in ecological communities, but show that its outcomes depend on prey behaviour, spatial structure, and omnivory. Diversity-enhancing effects of top predators cannot be assumed, and non-consumptive effects of predation risk may be a widespread constraint on species coexistence.
Whole-ecosystem manipulations of Caribbean islands occupied by brown anoles, involving the addition of competitors (green anoles) and/or top predators (curly-tailed lizards), demonstrate that predator introductions can alter the ecological niches and destabilize the coexistence of competing prey species.
Journal Article