Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
27,804
result(s) for
"Food packaging industry"
Sort by:
Innovations in the food packaging market: active packaging
2017
The requirements towards packaging and articles intended to come into contact with food are systematically growing. Due to the growing consumer interest in consumption of fresh products with extended shelf life and controlled quality, manufacturers have to provide modern and safe packaging. It is a challenge for the food packaging industry and also acts as a driving force for the development of new and improved concepts of technology packaging. It is in order to meet these needs that active packaging can be applied. This article presents a new generation of packaging, which allows to maintain and even improve the quality of the packaged product, which is an essential advantage particularly in the food industry. It is to this end that the role and the application of active packaging were discussed. Among the solutions belonging to the active packaging, there are oxygen and moisture scavengers, ethylene regulators, and antimicrobial packaging. Active packaging is an excellent solution for a wide range of applications in the food industry. The most important advantage resulting from their use is reduction in loss of food products due to extension of their shelf life. Active systems are the future direction for development of food packaging and their commercial success should be expected in the coming years. It will undoubtedly result from constantly improved technologies of their production and the knowledge about mechanisms of their functioning and the effectiveness of their operation in ensuring food safety accumulated by both producers and consumers over time.
Journal Article
An overview of paper and paper based food packaging materials: health safety and environmental concerns
by
Gaurav Kr Deshwal
,
Alam, Tanweer
,
Narender Raju Panjagari
in
Bakery products
,
Beverages
,
Bleaching
2019
Pulp and paper industry is one of the major sector in every country of the globe contributing not only to Gross Domestic Product but surprisingly to environmental pollution and health hazards also. Paper and paperboard based material is the one of the earliest and largest used packaging form for food products like milk and milk based products, beverages, dry powders, confectionary, bakery products etc. owing to its eco-friendly hallmark. Various toxic chemicals like printing inks, phthalates, surfactants, bleaching agents, hydrocarbons etc. are incorporated in the paper during its development process which leaches into the food chain during paper production, food consumption and recycling through water discharges. Recycling is considered the best option for replenishing the loss to environment but paper can be recycled maximum six to seven times and paper industry waste is very diverse in nature and composition. Various paper disposal methods like incineration, landfilling, pyrolysis and composting are available but their process optimization becomes a barrier. This review article aims at discussing in detail the use of paper and paper based packaging materials for food applications and painting a wide picture of various health and environmental issues related to the usage of paper and paper based packaging material in food industry. A brief comparison of the environmental aspects of paper production, recycling and its disposal options (incineration and land filling) had also been discussed.
Journal Article
Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials
by
Ncube, Lindani Koketso
,
Beas, Isaac Nongwe
,
Ogunmuyiwa, Enoch Nifise
in
Agricultural wastes
,
Biodegradable materials
,
Biodegradation
2020
Plastics have remained the material of choice, and after serving their intended purpose, a large proportion ends up in the environment where they persist for centuries. The packaging industry is the largest and growing consumer of synthetic plastics derived from fossil fuels. Food packaging plastics account for the bulk of plastic waste that are polluting the environment. Additionally, given the fact that petroleum reserves are finite and facing depletion, there is a need for the development of alternative materials that can serve the same purpose as conventional plastics. This paper reviews the function of packaging materials and highlights the future potential of the adoption of green materials. Biopolymers have emerged as promising green materials although they still have very low market uptake. Polylactic acid (PLA) has emerged as the most favoured bioplastic. However, it is limited by its high cost and some performance drawbacks. Blending with agricultural waste and natural fillers can result in green composites at low cost, low greenhouse gas emissions, and with improved performance for food packaging applications. The continent of Africa is proposed as a rich source of fibres and fillers that can be sustainably exploited to fabricate green composites in a bid to achieve a circular economy.
Journal Article
Revealing the intersectoral material flow of plastic containers and packaging in Japan
2020
The Japanese government developed a strategy for plastics and laid out ambitious targets including the reduction of 25% for single-use plastic waste and the reuse/recycling of 60% for plastic containers and packaging by 2030. However, the current usage situation of single-use plastics including containers and packaging, which should be a basis of the strategy, is unclear. Here, we identify the nationwide material flow of plastics in Japan based on input–output tables. Of the domestic plastic demand of 8.4 Mt in 2015, 1.6 and 2.5 Mt were estimated to be for containers and packaging comprising household and industry inflows, respectively, through the purchase/procurement of products, services, and raw materials. Considering the current amount of recycling collected from households (1.0 Mt) and industries (0.3 to 0.4 Mt), the reuse/recycling target has already been achieved if the goal is limited to household container and packaging waste, as is the focus of Japan’s recycling law. Conversely, the results indicate that it will be extremely difficult to reach the target collectively with industries. Therefore, it is essential that efforts be made throughout the entire supply chain. Food containers and packaging that flowed into the food-processing and food service sectors accounted for 15% of the inflow of containers and packaging into industries. Thus, the key to achieving the reuse/recycling target will comprise the collection of plastic food packaging from not only households but also the food industry. Furthermore, the collection of flexible plastic films used between industry sectors will put the target within reach.
Journal Article
Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food Models
by
Nazari, Maryam
,
Hamishehkar, Hamed
,
Emaminia, Sana
in
active food packaging
,
Agriculture
,
Antibacterial activity
2019
The food packaging industry has shown increasing attention toward biodegradable active packaging because of consumer demand for the extended shelf life of food products, as well as environmental concerns. In this study, the gelatin-based nanocomposite containing chitosan nanofiber (CHINF) and ZnO nanoparticles (ZnONPs) were fabricated and characterized by SEM analysis. The fabricated nanocomposite film revealed high antibacterial activity against foodborne pathogenic bacteria. To assess the efficiency of this bionanocomposite film for food packaging, chicken fillet and cheese was selected as food models. The results showed that the wrapping with nanocomposite film significantly (
p
< 0.05) decreased the growth of inoculation bacteria in chicken fillet and cheese samples. The changes in pH values and color parameters in chicken fillet and cheese samples were controlled by wrapping with nanocomposite film during storage time. At the end of 12-day storage, the weight loss of the wrapped chicken fillet and cheese samples with nanocomposite were 18.91 ± 1.96 and 36.11 ± 3.74%, respectively. In addition, the organoleptic characteristics of wrapped chicken fillet and cheese samples with nanocomposite film were acceptable until the end of storage. In conclusion, the fabricated nanocomposite can be suggested as a suitable packaging material for poultry meat and cheese to improve their shelf life and quality.
Journal Article
Prospects of using nanotechnology for food preservation, safety, and security
2018
The rapid development of nanotechnology has transformed many domains of food science, especially those that involve the processing, packaging, storage, transportation, functionality, and other safety aspects of food. A wide range of nanostructured materials (NSMs), from inorganic metal, metal oxides, and their nanocomposites to nano-organic materials with bioactive agents, has been applied to the food industry. Despite the huge benefits nanotechnology has to offer, there are emerging concerns regarding the use of nanotechnology, as the accumulation of NSMs in human bodies and in the environment can cause several health and safety hazards. Therefore, safety and health concerns as well as regulatory policies must be considered while manufacturing, processing, intelligently and actively packaging, and consuming nano-processed food products. This review aims to provide a basic understanding regarding the applications of nanotechnology in the food packaging and processing industries and to identify the future prospects and potential risks associated with the use of NSMs.
[Display omitted]
•Nanotechnology has transformed many domains of food science, especially preservation and safety of food.•A wide range of nanomaterials have witnessed their applications in food industry.•Nanotechnology also offers advantageous benefits on human health than conventional approaches.•Encapsulation of nutraceuticals improves their stability, and bioavailability leading to beneficial effects to humans.
Journal Article
Biodegradable Antimicrobial Food Packaging: Trends and Perspectives
by
Ficai, Denisa
,
Motelica, Ludmila
,
Kaya, Durmuş Alpaslan
in
active ingredients
,
Addition polymerization
,
Agricultural resources
2020
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package’s antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Journal Article
Applications of 3D Printing in Food Processing
2019
3D printing is an innovation that promises to revolutionize food formulation and manufacturing processes. Preparing foods with customized sensory attributes from different ingredients and additives has always been a need. The competency that additive manufacturing offers has been among the key reasons for its success in food processing applications. In this work, an up-to-date review on insight into the properties of printing material supplies and its effect on printing processes is presented. A detailed note on the globalization of customized printed foods, personalized nutrition, and applications in food packaging to highlight the range of applications of 3D printing in the food industry is also given. Importantly, key challenges in 3D food printing, emphasizing the need for future research in this field are elaborated.
Journal Article
Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging
by
Ribeiro, Isabel A. C.
,
Bettencourt, Ana
,
Romão, Sofia
in
Alternatives
,
Antiinfectives and antibacterials
,
Antimicrobial agents
2022
Packaging plays an important role in food quality and safety, especially regarding waste and spoilage reduction. The main drawback is that the packaging industry is among the ones that is highly dependent on plastic usage. New alternatives to conventional plastic packaging such as biopolymers-based type are mandatory. Examples are cellulose films and its derivatives. These are among the most used options in the food packaging due to their unique characteristics, such as biocompatibility, environmental sustainability, low price, mechanical properties, and biodegradability. Emerging concepts such as active and intelligent packaging provides new solutions for an extending shelf-life, and it fights some limitations of cellulose films and improves the properties of the packaging. This article reviews the available cellulose polymers and derivatives that are used as sustainable alternatives for food packaging regarding their properties, characteristics, and functionalization towards active properties enhancement. In this way, several types of films that are prepared with cellulose and their derivatives, incorporating antimicrobial and antioxidant compounds, are herein described, and discussed.
Journal Article