Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,412
result(s) for
"Forensic ballistics."
Sort by:
Ballistics
by
Kortuem, Amy, author
in
Forensic ballistics Juvenile literature.
,
Bullets Identification Juvenile literature.
,
Criminal investigation Juvenile literature.
2019
\"A shooting has occurred. Investigators have not yet found evidence. Then they look in a storm drain and find shell casings. They put the casings in a paper bag and send them to the lab to be analyzed. Find out about the techniques and tools ballistics experts use to help bring even the toughest cases to a close\"-- Provided by publisher.
Ten years of molecular ballistics—a review and a field guide
2021
Molecular ballistics combines molecular biological, forensic ballistic, and wound ballistic insights and approaches in the description, collection, objective investigation, and contextualization of the complex patterns of biological evidence that are generated by gunshots at biological targets. Setting out in 2010 with two seminal publications proving the principle that DNA from backspatter collected from inside surfaces of firearms can be retreived and successfully be analyzed, molecular ballistics covered a lot of ground until today. In this review, 10 years later, we begin with a comprehensive description and brief history of the field and lay out its intersections with other forensic disciplines like wound ballistics, forensic molecular biology, blood pattern analysis, and crime scene investigation. In an application guide section, we aim to raise consciousness to backspatter traces and the inside surfaces of firearms as sources of forensic evidence. Covering crime scene practical as well as forensic genetic aspects, we introduce operational requirements and lay out possible procedures, including forensic RNA analysis, when searching for, collecting, analyzing, and contextualizing such trace material. We discuss the intricacies and rationales of ballistic model building, employing different tissue, skin, and bone simulants and the advantages of the “triple-contrast” method in molecular ballistics and give advice on how to stage experimental shootings in molecular ballistic research. Finally, we take a look at future applications and prospects of molecular ballistics.
Journal Article
Radiological investigation of gunshot wounds: a systematic review of published evidence
2019
IntroductionDespite the constantly growing popularity of radiological imaging in forensic pathology, a systematic review investigating the efficiency and limits of radiological techniques, in comparison to forensic autopsy, was still missing.AimThe present review aims at providing an overview on the current role of radiology in the forensic investigation of fatal gunshot wounds without any restriction to specific radiological techniques.Material and methodsA systematic literature search on three databases (PubMed, Web of Science, and Science Direct) was performed until December 2017. The Oxford Centre for Evidence Based Medicine (OCEBM) grading system for levels of evidence was applied, in order to weigh published evidence.Results and discussionEighty-six papers (1.64% of the records) were included. Despite the quite limited general level of evidence, which contrasts with the abundance of the scientific literature on this topic, several recommendations/statements, coupled to their OCEBM grade, were distilled as for the identification of retained bullets, gunshot wounds detection, diagnosis of entrance and exit wounds, trajectories and internal injury detection and estimation of the firing distance.ConclusionsImaging radiological technologies represent the present and future of wound ballistics. However, traditional, micro and molecular imaging techniques require further validation through blinded cross-sectional studies with appropriate reference standards (e.g. forensic autopsy).
Journal Article
Ballistic long bone fracture pattern: an experimental study
2024
When dealing with badly preserved cadavers or skeletal human remains, the assessment of death circumstances remains challenging. When forensic evidence cannot be taken from the skin and soft tissue, the information may only be deduced from more resistant elements such as bone. Compared to cranial gunshot injuries, reliable data on ballistic long bone trauma remains scarce. This study aims to define ballistic fracture characteristics in human long bones. The shaft of 16 femurs and 13 humeri from body donors was perpendicularly shot with a 9-mm Luger full metal jacket bullet at an impact velocity of 360 m/s from a distance of 2 m. Some bones were embedded in Clear Ballistics Gel®, and some were shot without soft tissue simulant in order to better visualise the fracture propagation on the high-speed camera. The fractures were examined macroscopically and compared between the sample groups. We consistently found comminuted fractures with a stellate pattern. Fracture details were classified into entrance, exit and general characteristics. For some traits, we detected different occurrence values in the group comparison. The results indicate that some of the traits depend on bone properties such as shaft diameter, bone length and cortical thickness. The presence of ballistic gel also influenced some fracture traits, emphasising the relevance of soft tissue simulant in osseous gunshot experiments. This study revealed new insights in the detailed fracture pattern of human long bones. These may serve as guidelines for the identification and reconstruction of gunshot trauma in human long bones.
Journal Article
Skin simulants for wound ballistic investigation – an experimental study
by
Kamphausen, Thomas
,
Rothschild, Markus A
,
Kneubuehl, Beat P
in
Alginates
,
Autopsies
,
Ballistics
2024
Gunshot wound analysis is an important part of medicolegal practice, in both autopsies and examinations of living persons. Well-established and studied simulants exist that exhibit both physical and biomechanical properties of soft-tissues and bones. Current research literature on ballistic wounds focuses on the biomechanical properties of skin simulants. In our extensive experimental study, we tested numerous synthetic and natural materials, regarding their macromorphological bullet impact characteristics, and compared these data with those from real bullet injuries gathered from medicolegal practice. Over thirty varieties of potential skin simulants were shot perpendicularly, and at 45°, at a distance of 10 m and 0.3 m, using full metal jacket (FMJ) projectiles (9 × 19 mm Luger). Simulants included ballistic gelatine at various concentrations, dental silicones with several degrees of hardness, alginates, latex, chamois leather, suture trainers for medical training purposes and various material compound models. In addition to complying to the general requirements for a synthetic simulant, results obtained from dental silicones shore hardness 70 (backed with 20 % by mass gelatine), were especially highly comparable to gunshot entry wounds in skin from real cases. Based on these results, particularly focusing on the macroscopically detectable criteria, we can strongly recommend dental silicone shore hardness 70 as a skin simulant for wound ballistics examinations.
Journal Article
Observing the fragmentation of two expanding bullet types and a full metal-jacketed bullet with computed tomography—a forensic ballistics case study
2024
Computed tomography (CT) may have a crucial role in the forensic documentation and analysis of firearm injuries. The aim of this forensic ballistics case study was to explore whether two types of expanding bullets and a full metal-jacketed bullet could be differentiated by inspecting bullet fragments and fragmentation pattern in CT. Three types of .30 caliber bullets (full metal-jacketed Norma Jaktmatch, expanding full-copper Norma Ecostrike, and expanding soft-point Norma Oryx) were test fired from a distance of 5 m to blocks of 10% ballistic gelatine. CT scans of the blocks were obtained with clinical equipment and metal artifact reduction. Radiopaque fragments were identified and fragmentation parameters were obtained from the scans (total number of fragments, maximum diameter of the largest fragment, distance between entrance and the closest fragment, length of the fragment cloud, and maximum diameters of the fragment cloud). The fragmentation patterns were additionally visualized by means of 3D reconstruction. In CT, the bullet types differed in several fragmentation parameters. While the expanding full-copper bullet Ecostrike left behind only a single fragment near the end of the bullet channel, the soft-point Oryx had hundreds of fragments deposited throughout the channel. For both expanding bullets Ecostrike and Oryx, the fragments were clearly smaller than those left behind by the full metal-jacketed Jaktmatch. This was surprising as the full metal-jacketed bullet was expected to remain intact. The fragment cloud of Jaktmatch had similar mediolateral and superoinferior diameters to that of Oryx; however, fragments were deposited in the second half of the gelatine block, and not throughout the block. This case study provides a basis and potential methodology for further experiments. The findings are expected to benefit forensic practitioners with limited background information on gunshot injury cases, for example, those that involve several potential firearms or atypical gunshot wounds. The findings may prove beneficial for both human and wildlife forensics.
Journal Article
A comparison of gelatine surrogates for wound track assessment
2024
The use of ordnance gelatine has been widespread in the field of ballistics as a simulant for soft tissue when assessing ballistic threats. However, the traditional method of preparing ordnance gelatine is time-consuming and requires precision to ensure that the final mold meets the required specifications. Furthermore, temperature control is necessary post-production, and there are limitations on its usage duration. To address these issues, manufacturers have developed pre-mixed, gelatine-like products that are stable at room temperature and require less preparation time. Nonetheless, it is uncertain whether these new products can perform in the same manner as the gold standard of ordnance gelatine. This study used five types of blocks, including ordnance gelatine (10% and 20%), Clear Ballistics (10% and 20%) and Perma-Gel (10%) and subjected them to 9 mm, 0.380 Auto fired from a universal receiver and a 5.56 × 45 mm ammunition fired by a certified firearms instructor. Delta-V and total energy dissipation were measured after each test using data collected from ballistic chronographs placed in front of and behind each block. High-speed video was recorded, and a cut-down analysis conducted. The findings revealed variations in energy dissipation and fissure formation within the block, with greater energy based on fissure formation observed in the ordnance gelatine. Additionally, the high-speed video showed the occurrence of secondary combustions occurring in the premixed gelatines.
Journal Article
The effect of human decomposition on bullet examination
2024
Most firearm related homicides involve the deceased being forensically examined within a day or two, however, there are times when bodies have been examined and the fired components removed several days or weeks after death, when the body is in an active or advanced state of decomposition. In these cases, ballistic investigation has been found to be complicated due to the damage to the bullets, however the extent of this is not yet known. To date, there have been no studies investigating the effect of human decomposition and the subsequent analysis of bullets lodged in the body in an Australian context. Herein, seven fired copper jacketed bullets were manually inserted into three specific tissue types; lungs, abdomen and leg muscle (twenty-one bullets in total), of human donors in both cool and warm conditions at the Australian Facility for Taphonomic Experimental Research (AFTER). Bullets were removed every three days for a period of twenty-one days, and each bullet underwent manual microscopic examinations by firearms examiners across Australia. Results have indicated that the bullets corrode quickly in warm conditions, compared to bullets exposed to decomposition in cooler conditions. The results of this study will inform investigators and pathologists of the need to remove and examine fired bullets from decomposed bodies as soon as possible, especially in warm conditions to provide firearms examiners with the best opportunity to link fired bullets to a common source.
•This study presents an examination of bullet damage in decomposing human remains.•Temperature and decomposition rate affects the degree of bullet damage.•Bullet damage greatly affects ability to affect bullet comparisons.
Journal Article
New alginate-gelatine method for casting of staining inside firearm barrels
2024
Contact shots to the head often leave behind biological traces inside firearm barrels, a phenomenon of great forensic interest. Until now, the visualization and preservation of these traces presented a significant challenge, lacking a reliable method. This study addresses this gap by searching for a suitable method to extract the traces within a casting. Using alginate or gelatine as suitable materials, the results were hampered by serious adhesion issues and their extraction out of the firearm barrel was impeded. Finally, the combination of 11% gelatine with 1% alginate, introduced into the barrel around a ‘central spine’, succeeded to consistently produce replicable castings. Experimental contact shots displayed a distinct staining gradient from the muzzle to the rear of the barrel, as revealed through endoscopy and proved in the macroscopic casting. The technique proved effective for various common handgun barrels and successfully preserved blood and gunshot residue (GSR) patterns within the barrel. This method offers the dual benefits of visually mapping staining patterns and securing localized samples for targeted molecular genetic analysis in forensic investigations.
Journal Article
Characterisation of gunshot residues from non-toxic ammunition and their persistence on the shooter’s hands
by
Romolo, Francesco Saverio
,
Romanò Sabrina
,
D’Onofrio Carlo
in
Aluminum
,
Ammunition
,
Cartridges
2020
The aim of this work was to characterise three non-toxic ammunition (NTA) from the GECO and Fiocchi brands, which are available in the Italian market. Characterisation was carried out by considering both the elemental chemical composition and morphology, using scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDS). Particles were collected from both the cartridge cases and the shooters’ hands after shooting tests. Six volunteers fired two shots for each ammunition. Several elements, such as aluminium, potassium, silicon, sulphur, titanium and zinc were found in gunshot residue (GSR) particles from different ammunition. We also studied the persistence of these types of GSR on the hands of the shooters in a range between 1 and 6 h after shooting. The GSR particles from the three NTA tested were found on the hands of shooters until 6 h after the shots. The characterisations undertaken in this work will be useful for specialists in forensic science and legal medicine to evaluate trace evidence from these new NTA in casework, as such formulations are in growth.
Journal Article