Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,677 result(s) for "Forestry - methods"
Sort by:
Restoring natural forests is the best way to remove atmospheric carbon
Plans to triple the area of plantations will not meet 1.5 °C climate goals. New natural forests can, argue Simon L. Lewis, Charlotte E. Wheeler and colleagues. Plans to triple the area of plantations will not meet 1.5 °C climate goals. New natural forests can, argue Simon L. Lewis, Charlotte E. Wheeler and colleagues. Two workers handle tree saplings being grown to reforest ​burned areas of Indonesia
The carbon costs of global wood harvests
After agriculture, wood harvest is the human activity that has most reduced the storage of carbon in vegetation and soils 1 , 2 . Although felled wood releases carbon to the atmosphere in various steps, the fact that growing trees absorb carbon has led to different carbon-accounting approaches for wood use, producing widely varying estimates of carbon costs. Many approaches give the impression of low, zero or even negative greenhouse gas emissions from wood harvests because, in different ways, they offset carbon losses from new harvests with carbon sequestration from growth of broad forest areas 3 , 4 . Attributing this sequestration to new harvests is inappropriate because this other forest growth would occur regardless of new harvests and typically results from agricultural abandonment, recovery from previous harvests and climate change itself. Nevertheless some papers count gross emissions annually, which assigns no value to the capacity of newly harvested forests to regrow and approach the carbon stocks of unharvested forests. Here we present results of a new model that uses time discounting to estimate the present and future carbon costs of global wood harvests under different scenarios. We find that forest harvests between 2010 and 2050 will probably have annualized carbon costs of 3.5–4.2 Gt CO 2 e yr −1 , which approach common estimates of annual emissions from land-use change due to agricultural expansion. Our study suggests an underappreciated option to address climate change by reducing these costs. A new model uses time discounting to estimate the present and future carbon costs of global wood harvests under different scenarios, suggesting an underappreciated option to address climate change.
Applicability of personal laser scanning in forestry inventory
Light Detection and Ranging (LiDAR) technology has been widely used in forestry surveys in the form of airborne laser scanning (ALS), terrestrial laser scanning (TLS), and mobile laser scanning (MLS). The acquisition of important basic tree parameters (e.g., diameter at breast height and tree position) in forest inventory did not solve the problem of low measurement efficiency or weak GNSS signal under the canopy. A personal laser scanning (PLS) device combined with SLAM technology provides an effective solution for forest inventory under complex conditions with its light weight and flexible mobility. This study proposes a new method for calculating the volume of a cylinder using point cloud data obtained by a PLS device by fitting to a polygonal cylinder to calculate the diameter of the trunk. The point cloud data of tree trunks of different thickness were modeled using different fitting methods. The rate of correct tree trunk detection was 93.3% and the total deviation of the estimations of tree diameter at breast height (DBH) was -1.26 cm. The root mean square errors (RMSEs) of the estimations of the extracted DBH and the tree position were 1.58 cm and 26 cm, respectively. The survey efficiency of the personal laser scanning (PLS) device was 30m2/min for each investigator, compared with 0.91m2/min for the field survey. The test demonstrated that the PLS device combined with the SLAM algorithm provides an efficient and convenient solution for forest inventory.
Landscape-scale benefits of protected areas for tropical biodiversity
The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines 1 . However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear 2 , 3 , 4 – 5 . Unregulated hunting can empty PAs of large animals 6 , illegal tree felling can degrade habitat quality 7 , and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape 8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites 9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape. Protected areas across mega-diverse Southeast Asia are associated with elevated vertebrate biodiversity inside their boundaries and in surrounding areas.
Integrating ecosystem-service tradeoffs into land-use decisions
Recent high-profile efforts have called for integrating ecosystem-service values into important societal decisions, but there are few demonstrations of this approach in practice. We quantified ecosystem-service values to help the largest private landowner in Hawaii, Kamehameha Schools, design a land-use development plan that balances multiple private and public values on its North Shore land holdings (Island of O’ahu) of ∼10,600 ha. We used the InVEST software tool to evaluate the environmental and financial implications of seven planning scenarios encompassing contrasting land-use combinations including biofuel feedstocks, food crops, forestry, livestock, and residential development. All scenarios had positive financial return relative to the status quo of negative return. However, tradeoffs existed between carbon storage and water quality as well as between environmental improvement and financial return. Based on this analysis and community input, Kamehameha Schools is implementing a plan to support diversified agriculture and forestry. This plan generates a positive financial return ($10.9 million) and improved carbon storage (0.5% increase relative to status quo) with negative relative effects on water quality (15.4% increase in potential nitrogen export relative to status quo). The effects on water quality could be mitigated partially (reduced to a 4.9% increase in potential nitrogen export) by establishing vegetation buffers on agricultural fields. This plan contributes to policy goals for climate change mitigation, food security, and diversifying rural economic opportunities. More broadly, our approach illustrates how information can help guide local land-use decisions that involve tradeoffs between private and public interests.
Multiple forest attributes underpin the supply of multiple ecosystem services
Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes. Managing forests for the supply of multiple ecosystem services (ES) is key given potential trade-offs among services. Here, the authors analyse how forest stand attributes generate trade-offs among ES and the relative contribution of forest attributes and environmental factors to predict services.
Global patterns and climatic controls of forest structural complexity
The complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes. Forest structure depends both on extrinsic factors such as climate and on intrinsic properties such as community composition and diversity. Here, the authors use a dataset of stand structural complexity based on LiDAR measurements to build a global map of structural complexity for primary forests, and find that precipitation variables best explain global patterns of forest structural complexity.
Forest fire size amplifies postfire land surface warming
Climate warming has caused a widespread increase in extreme fire weather, making forest fires longer-lived and larger 1 – 3 . The average forest fire size in Canada, the USA and Australia has doubled or even tripled in recent decades 4 , 5 . In return, forest fires feed back to climate by modulating land–atmospheric carbon, nitrogen, aerosol, energy and water fluxes 6 – 8 . However, the surface climate impacts of increasingly large fires and their implications for land management remain to be established. Here we use satellite observations to show that in temperate and boreal forests in the Northern Hemisphere, fire size persistently amplified decade-long postfire land surface warming in summer per unit burnt area. Both warming and its amplification with fire size were found to diminish with an increasing abundance of broadleaf trees, consistent with their lower fire vulnerability compared with coniferous species 9 , 10 . Fire-size-enhanced warming may affect the success and composition of postfire stand regeneration 11 , 12 as well as permafrost degradation 13 , presenting previously overlooked, additional feedback effects to future climate and fire dynamics. Given the projected increase in fire size in northern forests 14 , 15 , climate-smart forestry should aim to mitigate the climate risks of large fires, possibly by increasing the share of broadleaf trees, where appropriate, and avoiding active pyrophytes. Climate warming has increased forest fire sizes, amplifying postfire summer warming, with broadleaf trees mitigating this effect; climate-smart forestry should increase broadleaf tree cover to manage future fire risks.
Global potential for natural regeneration in deforested tropical regions
Extensive forest restoration is a key strategy to meet nature-based sustainable development goals and provide multiple social and environmental benefits 1 . Yet achieving forest restoration at scale requires cost-effective methods 2 . Tree planting in degraded landscapes is a popular but costly forest restoration method that often results in less biodiverse forests when compared to natural regeneration techniques under similar conditions 3 . Here we assess the current spatial distribution of pantropical natural forest (from 2000 to 2016) and use this to present a model of the potential for natural regeneration across tropical forested countries and biomes at a spatial resolution of 30 m. We estimate that an area of 215 million hectares—an area greater than the entire country of Mexico—has potential for natural forest regeneration, representing an above-ground carbon sequestration potential of 23.4 Gt C (range, 21.1–25.7 Gt) over 30 years. Five countries (Brazil, Indonesia, China, Mexico and Colombia) account for 52% of this estimated potential, showcasing the need for targeting restoration initiatives that leverage natural regeneration potential. Our results facilitate broader equitable decision-making processes that capitalize on the widespread opportunity for natural regeneration to help achieve national and global environmental agendas. An estimated area of 215 million hectares has the potential for natural forest regeneration across tropical forested countries and biomes, representing an above-ground carbon sequestration potential of 23.4 Gt C.
FSC-certified forest management benefits large mammals compared to non-FSC
More than a quarter of the world’s tropical forests are exploited for timber 1 . Logging impacts biodiversity in these ecosystems, primarily through the creation of forest roads that facilitate hunting for wildlife over extensive areas. Forest management certification schemes such as the Forest Stewardship Council (FSC) are expected to mitigate impacts on biodiversity, but so far very little is known about the effectiveness of FSC certification because of research design challenges, predominantly limited sample sizes 2 , 3 . Here we provide this evidence by using 1.3 million camera-trap photos of 55 mammal species in 14 logging concessions in western equatorial Africa. We observed higher mammal encounter rates in FSC-certified than in non-FSC logging concessions. The effect was most pronounced for species weighing more than 10 kg and for species of high conservation priority such as the critically endangered forest elephant and western lowland gorilla. Across the whole mammal community, non-FSC concessions contained proportionally more rodents and other small species than did FSC-certified concessions. The first priority for species protection should be to maintain unlogged forests with effective law enforcement, but for logged forests our findings provide convincing data that FSC-certified forest management is less damaging to the mammal community than is non-FSC forest management. This study provides strong evidence that FSC-certified forest management or equivalently stringent requirements and controlling mechanisms should become the norm for timber extraction to avoid half-empty forests dominated by rodents and other small species. Camera-trap images of 55 mammal species in 14 logging concessions in western equatorial Africa reveal greater animal encounter rates in FSC-certified than in non-certified forests, especially for large mammals and species of high conservation priority.