Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,662 result(s) for "Formal methods (Computer science)"
Sort by:
Convolutional Neural Networks: A Survey
Artificial intelligence (AI) has become a cornerstone of modern technology, revolutionizing industries from healthcare to finance. Convolutional neural networks (CNNs) are a subset of AI that have emerged as a powerful tool for various tasks including image recognition, speech recognition, natural language processing (NLP), and even in the field of genomics, where they have been utilized to classify DNA sequences. This paper provides a comprehensive overview of CNNs and their applications in image recognition tasks. It first introduces the fundamentals of CNNs, including the layers of CNNs, convolution operation (Conv_Op), Feat_Maps, activation functions (Activ_Func), and training methods. It then discusses several popular CNN architectures such as LeNet, AlexNet, VGG, ResNet, and InceptionNet, and compares their performance. It also examines when to use CNNs, their advantages and limitations, and provides recommendations for developers and data scientists, including preprocessing the data, choosing appropriate hyperparameters (Hyper_Param), and evaluating model performance. It further explores the existing platforms and libraries for CNNs such as TensorFlow, Keras, PyTorch, Caffe, and MXNet, and compares their features and functionalities. Moreover, it estimates the cost of using CNNs and discusses potential cost-saving strategies. Finally, it reviews recent developments in CNNs, including attention mechanisms, capsule networks, transfer learning, adversarial training, quantization and compression, and enhancing the reliability and efficiency of CNNs through formal methods. The paper is concluded by summarizing the key takeaways and discussing the future directions of CNN research and development.
Principles of model checking
A comprehensive introduction to the foundations of model checking, a fully automated technique for finding flaws in hardware and software; with extensive examples and both practical and theoretical exercises.
Survey on graph embeddings and their applications to machine learning problems on graphs
Dealing with relational data always required significant computational resources, domain expertise and task-dependent feature engineering to incorporate structural information into a predictive model. Nowadays, a family of automated graph feature engineering techniques has been proposed in different streams of literature. So-called graph embeddings provide a powerful tool to construct vectorized feature spaces for graphs and their components, such as nodes, edges and subgraphs under preserving inner graph properties. Using the constructed feature spaces, many machine learning problems on graphs can be solved via standard frameworks suitable for vectorized feature representation. Our survey aims to describe the core concepts of graph embeddings and provide several taxonomies for their description. First, we start with the methodological approach and extract three types of graph embedding models based on matrix factorization, random-walks and deep learning approaches. Next, we describe how different types of networks impact the ability of models to incorporate structural and attributed data into a unified embedding. Going further, we perform a thorough evaluation of graph embedding applications to machine learning problems on graphs, among which are node classification, link prediction, clustering, visualization, compression, and a family of the whole graph embedding algorithms suitable for graph classification, similarity and alignment problems. Finally, we overview the existing applications of graph embeddings to computer science domains, formulate open problems and provide experiment results, explaining how different networks properties result in graph embeddings quality in the four classic machine learning problems on graphs, such as node classification, link prediction, clustering and graph visualization. As a result, our survey covers a new rapidly growing field of network feature engineering, presents an in-depth analysis of models based on network types, and overviews a wide range of applications to machine learning problems on graphs.
First three years of the international verification of neural networks competition (VNN-COMP)
This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software tools that analyze whether given neural networks satisfy specifications describing their input-output behavior. These neural networks and specifications cover a variety of problem classes and tasks, corresponding to safety and robustness properties in image classification, neural control, reinforcement learning, and autonomous systems. We summarize the key processes, rules, and results, present trends observed over the last three years, and provide an outlook into possible future developments.
Deciding All Behavioral Equivalences at Once: A Game for Linear-Time--Branching-Time Spectroscopy
We introduce a generalization of the bisimulation game that finds distinguishing Hennessy-Milner logic formulas from every finitary, subformula-closed language in van Glabbeek's linear-time--branching-time spectrum between two finite-state processes. We identify the relevant dimensions that measure expressive power to yield formulas belonging to the coarsest distinguishing behavioral preorders and equivalences; the compared processes are equivalent in each coarser behavioral equivalence from the spectrum. We prove that the induced algorithm can determine the best fit of (in)equivalences for a pair of processes.
Researching COVID-19 tracing app acceptance: incorporating theory from the technological acceptance model
The expansion of the coronavirus pandemic and the extraordinary confinement measures imposed by governments have caused an unprecedented intense and rapid contraction of the global economy. In order to revive the economy, people must be able to move safely, which means that governments must be able to quickly detect positive cases and track their potential contacts. Different alternatives have been suggested for carrying out this tracking process, one of which uses a mobile APP which has already been shown to be an effective method in some countries. Use an extended Technology Acceptance Model (TAM) model to investigate whether citizens would be willing to accept and adopt a mobile application that indicates if they have been in contact with people infected with COVID-19. Research Methodology: A survey method was used and the information from 482 of these questionnaires was analyzed using Partial Least Squares-Structural Equation Modelling. The results show that the Intention to Use this app would be determined by the Perceived Utility of the app and that any user apprehension about possible loss of privacy would not be a significant handicap. When having to choose between health and privacy, users choose health. This study shows that the extended TAM model which was used has a high explanatory power. Users believe that the APP is useful (especially users who studied in higher education), that it is easy to use, and that it is not a cause of concern for privacy. The highest acceptance of the app is found in over 35 years old's, which is the group that is most aware of the possibility of being affected by COVID-19. The information is unbelievably valuable for developers and governments as users would be willing to use the APP.
A Formally Verified Compiler Back-end
This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its soundness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well.
A Formal Framework for Metamodeling in the Context of MDE
Metamodeling is a central concept in Model Driven Engineering (MDE). An important consideration in metamodeling is that secure metamodels are a prerequisite for secure software, since errors in a metamodel lead to errors in its instances (models). Formal methods can help solve this problem by providing systematic and rigorous techniques for reducing ambiguities and inconsistencies in the specification of metamodels. The goal of this article is to present a unified formal framework for metamodeling in the context of MDE, essentially based on MOF, the metamodeling foundation of the OMG industry standards. It is based on the Nereus metamodeling language and includes transformers for translating both MOF metamodels to Nereus metamodels and Nereus metamodels to MOF metamodels, with some prospects for future industrial use of these results. The Nereus language can be seen as a concrete syntax for MOF, extended by additional properties expressed by axioms. Transformers are defined starting from systems of transformation rules that allow automation of processes. An original real-world case in the context of model-driven reverse engineering is described.
Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings
Software defect prediction strives to improve software quality and testing efficiency by constructing predictive classification models from code attributes to enable a timely identification of fault-prone modules. Several classification models have been evaluated for this task. However, due to inconsistent findings regarding the superiority of one classifier over another and the usefulness of metric-based classification in general, more research is needed to improve convergence across studies and further advance confidence in experimental results. We consider three potential sources for bias: comparing classifiers over one or a small number of proprietary data sets, relying on accuracy indicators that are conceptually inappropriate for software defect prediction and cross-study comparisons, and, finally, limited use of statistical testing procedures to secure empirical findings. To remedy these problems, a framework for comparative software defect prediction experiments is proposed and applied in a large-scale empirical comparison of 22 classifiers over 10 public domain data sets from the NASA Metrics Data repository. Overall, an appealing degree of predictive accuracy is observed, which supports the view that metric-based classification is useful. However, our results indicate that the importance of the particular classification algorithm may be less than previously assumed since no significant performance differences could be detected among the top 17 classifiers.