Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
367
result(s) for
"Foundations and piers"
Sort by:
Study on Dynamic Behavior of Bridge Pier by Impact Load Test Considering Scour
2020
In this study, for the establishment of a safety evaluation method, non-destructive tests were performed by developing a full-scale model pier and simulating scour on the ground adjacent to a field pier. The surcharge load (0-250 kN) was applied to the full-scale model pier to analyze the load's effect on the stability. For analyzing the pier's behavior according to the impact direction, an impact was applied in the bridge axis direction, pier length direction, and pier's outside direction. The impact height corresponded to the top of the pier. A 1-m deep scour was simulated along one side of the ground, which was adjacent to the pier foundation. The acceleration was measured using accelerometers when an impact was applied. The natural frequency, according to the impact direction and surcharge load, was calculated using a fast Fourier transform (FFT). In addition, the first mode (vibratory), second mode (vibratory), and third modes (torsion) were analyzed according to the pier behavior using the phase difference, and the effect of the scour occurrence on the natural frequency was analyzed. The first mode was most affected by the surcharge load and scour. The stability of the pier can be determined using the second mode, and the direction of the scour can be determined using the third mode. Keywords: prototype abutment; non-destructive test; surcharge load; mode number; scour
Journal Article
Analysis of Local Scour around Double Piers in Tandem Arrangement in an S-Shaped Channel under Ice-Jammed Flow Conditions
2024
The stability of bridge foundations is affected by local scour, and the formation of ice jams exacerbates local scour around bridge piers. These processes, particularly the evolution of ice jams and local scour around piers, are more complex in curved sections than in straight sections. This study, based on experiments in an S-shaped channel, investigates how various factors—the flow Froude number, ice–water discharge rate, median particle diameter, pier spacing, and pier diameter—affect the maximum local scour depth around double piers in tandem and the distribution of ice jam thickness. The results indicate that under ice-jammed flow conditions, the maximum local scour depth around double piers in tandem is positively correlated with the ice–water discharge rate, pier spacing, and pier diameter and negatively correlated with median particle diameter. The maximum local scour depth is positively correlated with the flow Froude number when it ranges from 0.1 to 0.114, peaking at 0.114. Above this value, the correlation becomes negative. In curved channels, the arrangement of double piers in tandem substantially influences ice jam thickness distribution, with increases in pier diameter and spacing directly correlating with greater ice jam thickness at each cross-section. Furthermore, ice jam thickness is responsive to flow conditions, escalating with higher ice–water discharge rates and decreasing flow Froude numbers.
Journal Article
Flow Pattern and Turbulent Kinetic Energy Analysis Around Tandem Piers: Insights from k-ε Modelling and Acoustic Doppler Velocimetry Measurements
2025
This study investigated the distribution and dynamics of the Turbulent Kinetic Energy (TKE) around a group of three tandem piers using a combination of numerical simulations and experimental measurements. The Volume of Fluid (VOF) method, coupled with the k-ε turbulence model, was implemented in ANSYS FLUENT to replicate the free-surface flow conditions. An experimental validation was conducted using Acoustic Doppler Velocimetry (ADV) to assess the model’s capability at capturing the turbulence characteristics. While the model effectively reproduced the near-bed turbulence, it consistently underestimated the TKE magnitudes across the flow domain, particularly in regions of strong vortex-induced turbulence. Discrepancies emerged in the confined regions between the piers, where the velocity profiles were overestimated at the surface and underestimated near the bed and mid-depth, impacting the TKE predictions. Despite these inconsistencies, the general pattern of the TKE distribution aligned with the experimental trends, though the absolute values remained underestimated due to the inherent limitations of the k-ε model. The model’s performance in less turbulent regions demonstrated improved accuracy, reinforcing its applicability for moderate turbulence simulations. To further examine the interaction between vortex structures and the TKE, velocity distributions were analyzed at three specific depths (z/h = 0.15, 0.4, and 0.62). The findings showed the critical role of vortex shedding in TKE generation and dissipation, with notable variations in the turbulence intensity influenced by structural confinement effects. This study offers a novel, high-resolution evaluation of the k-ε model’s ability to predict TKE distributions around tandem piers, using spatially detailed comparisons with the experimental data. Unlike previous studies that broadly acknowledged the model’s limitations, this work systematically identifies the specific regions, particularly vortex-dominated zones, where its predictive accuracy significantly degrades.
Journal Article
Prediction of Maximum Scour Around Circular Bridge Piers Using Semi-Empirical and Machine Learning Models
2025
Local scour around bridge piers is one of the primary causes of structural failure in bridges. Therefore, this study focuses on addressing the estimation of maximum scour depth (dsm), which is essential for safe and resilient bridge design. Many studies in the last eight decades have included metadata collection and developed around 80 empirical formulas using various scour-affecting parameters of different ranges. To date, a total of 33 formulas have been comparatively analyzed and ranked based on their predictive accuracy. In this study, novel formulas using semi-empirical methods and gene expression programming (GEP) have been developed alongside an artificial neural network (ANN) model to accurately estimate dsm using 768 observed data points collected from published work, along with eight newly conducted experimental data points in the laboratory. These new formulas/models are systematically compared with 74 empirical literature formulas for their predictive capability. The influential parameters for predicting dsm are flow intensity, flow shallowness, sediment gradation, sediment coarseness, time, constriction ratio, and Froude number. Performances of the formulas are compared using different statistical metrics such as the coefficient of determination, Nash–Sutcliffe efficiency, mean bias error, and root-mean-squared error. The Gauss–Newton method is employed to solve the nonlinear least-squares problem to develop the semi-empirical formula that outperforms the literature formulas, except the formula from GEP, in terms of statistical performance metrics. However, the feed-forward ANN model outperformed the semi-empirical model during testing and validation phases, respectively, with higher CD (0.790 vs. 0.756), NSE (0.783 vs. 0.750), lower RMSE (0.289 vs. 0.301), and greater prediction accuracy (64.655% vs. 61.935%), providing approximately 15–18% greater accuracy with minimal errors and narrower uncertainty bands. Using user-friendly tools and a strong semi-empirical model, which requires no coding skills, can assist designers and engineers in making accurate predictions in practical bridge design and safety planning.
Journal Article
Scour Reduction around Bridge Pier Using the Airfoil-Shaped Collar
by
Raj, P. Anand
,
Pu, Jaan H.
,
Gupta, Lav Kumar
in
airfoil-shaped collar
,
Airfoils
,
Bridge failure
2023
Scouring around the bridge pier is a natural and complex phenomenon that results in bridge failure. Failure of bridges have potential devastation and public safety and economic loss, which lead to political consequences and environmental impacts. Therefore, it is essential to countermeasure the scour around the bridge pier. This paper studies the effects of four different airfoil-shaped collars (i.e., bc1 = 1.5b, bc2 = 2.0b, bc3 = 2.5b and bc4 = 3.0b, where bc and b are the diameter of the airfoil-shaped collar and pier, respectively) as a scour countermeasure. All the experiments are conducted under clear water conditions with uniform sediment and a constant water depth (y) of 10 cm. Airfoil-shaped collar is placed at four elevations, i.e., bed level, y/4, y/2 and 3y/4 above the sediment bed level. It is observed that the maximum percentages of scour reduction of 86, 100 and 100% occurred due to protection provided by the collar bc2, bc3 and bc4, respectively, at sediment bed level. So, collars bc2, bc3 and bc4 are efficient at the sediment bed level. The profiles of scour hole show that the length of the transverse scour hole is greater than that of the longitudinal one. Numerical investigation of the morphological changes in sediment bed and scour depth contours is developed using the FLOW-3D for the pier with and without the airfoil-shaped collar.
Journal Article
Optimization of Combined Scour Protection for Bridge Piers Using Computational Fluid Dynamics
2025
This study presents a high-fidelity CFD-based optimization of a combined sacrificial-pile and collar (SPC) system designed to suppress local scour at circular bridge piers. Following rigorous validation against benchmark flume experiments (scour depth error < 3%), a systematic parametric study was conducted to quantify the influence of pile-to-pier spacing (dp/D = 4–6) and collar elevation (hc/D = 0–0.3). The optimal layout is found to be a sacrificial pile at dp/D = 5 and a collar at hc/D, which yields a 51.2% scour reduction relative to the unprotected case. Flow field analysis reveals that the pile wake deflects the lower approach flow, while the collar vertically displaces the horseshoe vortex; together, these mechanisms redistribute bed shear stress and prevent secondary undermining. Consequently, the upstream conical pit is virtually eliminated, lateral scour is broadened but markedly shallower, and the downstream dune tail bifurcates into two symmetrical ridges. To the best of the authors’ knowledge, this study presents the first high-fidelity CFD-based optimization of a combined sacrificial-pile and collar (SPC) system with a fully coupled hydrodynamic-morphodynamic model. The optimized layout yields a 51.2% scour reduction relative to the unprotected case and, more importantly, demonstrates a positive non-linear synergy that exceeds the linear sum of individual device efficiencies by 7.5%. The findings offer practical design guidance for enhancing bridge foundation resilience against scour-induced hydraulic failure.
Journal Article
Bridge Pier Extension with Carbon-Fiber Reinforced Polymer Flexural Reinforcement: Experimental Tests and Three-Dimensional Finite Element Modeling
by
Aboutaha, Riyad S
,
Tan, Cheng
,
Xu, Jia
in
Bridge piers
,
Bridges
,
Carbon fiber reinforced plastics
2021
This paper presents a study on extension of bridge pier cap beams reinforced with carbon fiber-reinforced polymer (CFRP) systems. Experimental tests and numerical modeling of quarter-scaled reinforced concrete hammerhead non-prismatic pier cap beams, extended on edges and reinforced with different CFRP systems, are presented. Five specimens were tested to evaluate the effect of various CFRP systems on ultimate strength, stifiness, and ductility. It was found that the failure mode changes as different CFRP systems are applied, which consequently impacted the ultimate strength and ductility of extended cap beams. A three-dimensional fnite element (FE) model was developed and presented in this paper. Failure mode and load-deffection response were successfully captured using the proposed FE model. Comparison and discussion of flexural capacities predicted using the FE model and current guideline were presented. Keywords: carbon fiber-reinforced polymer; fnite element modeling; flexural reinforcing; pier cap beam extension.
Journal Article
Dynamic Behaviour and Seismic Response of Scoured Bridge Piers
by
Carbonari, Sandro
,
Gara, Fabrizio
,
Dezi, Francesca
in
Analysis
,
Bridge decks
,
Bridge foundations
2025
This study explores the transverse response of bridge piers in riverbeds under a multi-hazard scenario, involving seismic actions and scoured foundations. The combined impact of scour on foundations’ stability and on the dynamic stiffness of soil–foundation systems makes bridges more susceptible to earthquake damage. While previous research has extensively investigated this issue for bridges founded on piles, this work addresses the less explored but critical scenario of bridges on shallow foundations, typical of existing bridges. A comprehensive soil–foundation structure model is developed to be representative of the transverse response of multi-span and continuous girder bridges, and the effects of different scour scenarios and foundation embedment on the dynamic stiffness of the soil–foundation sub-systems are investigated through refined finite element models. Then, a parametric investigation is conducted to assess the effects of scour on the dynamic properties of the systems and, for some representative bridge prototypes, the seismic response at scoured and non-scoured conditions are compared considering real earthquakes. The research results demonstrate the significance of scour effects on the dynamic properties of the soil–foundation structure system and on the displacement demand of the bridge decks.
Journal Article
Hydrodynamic Modeling and Comprehensive Assessment of Pier Scour Depth and Rate Induced by Wood Debris Accumulation
2024
This study mainly investigates the impact of debris accumulation on scour depth and scour hole characteristics around bridge piers. Through controlled experiments with uniform sand bed material, the influence of various debris shapes (high wedge, low wedge, triangle yield, rectangular, triangle bow, and half-cylinder), upstream debris length, downstream debris extension, and debris thickness on scour depth and scour hole area and volume around the cylindrical pier were analyzed. The findings revealed that the shape and location of debris in the water column upstream of piers are key factors that determine the depth of scour, with high wedge shapes inducing the deepest scour and potentially the largest scour hole, particularly when positioned close to the pier and fully submerged. Scenarios in which triangle bow debris was submerged at full depth upstream of the pier closely resembled situations devoid of debris. Conversely, debris extension downstream of the pier was found to reduce local scour depth while concurrently enlarging the dimensions of the scour hole. The existing scour prediction equations tend to overestimate scour depth in scenarios involving debris, particularly when applying effective and equivalent pier width. This discrepancy arises because these equations were originally developed to predict scour depth around piers in the absence of debris. In response, a refined model for predicting scour induced by debris was proposed, integrating factors such as upstream debris length, downstream extension, obstruction percentage, and debris shape factor. This model demonstrated strong agreement with experimental data within the scope of this study and underwent further validation using additional experimental datasets from other research endeavors. In conclusion, this experimental study advances the comprehension of scour processes around cylindrical bridge piers, providing valuable insights into the role of debris characteristics and positioning.
Journal Article
Durability Assessment Method of Hollow Thin-Walled Bridge Piers under Rockfall Impact Based on Damage Response Surface
2022
Continuous rigid-frame bridges across valleys are often at risk of rockfalls caused by heavy rainfalls, earthquakes, and debris flow in a mountainous environment. Hollow thin-walled bridge piers (HTWBP) in valleys are exposed to the threat of impact from accidental rockfalls. In the current research, ANSYS/LS-DYNA is used to establish a high-precision rockfall-HTWBP model. The rockfall-HTWBP model is verified against a scaled impact test performed in previously published research. A mesh independence test is also performed to obtain an appropriate mesh size. Based on the rockfall-HTWBP model, the impact force, damage, and dynamic response characteristics of HTWBP under a rockfall impact are studied. In addition, a damage assessment criterion is proposed, based on the response surface model, combined with the central composite design method and Box–Behnken design method. The main conclusions are as follows: (1) the impact force of the rockfall has a substantial impulse characteristic, and the duration of the impulse load is approximately 0.01 s. (2) The impacted surface of the pier is dominated by the final elliptic damage, with conical and strip damage areas as the symmetry axis. The cross-sectional damage mode is from compression failure in the impact area and shear failure at the corner. (3) The maximum displacement occurs in the middle height of the pier. The maximum displacement increases with impact height, impact velocity, and rockfall diameter and decreases with the uniaxial compressive strength of the concrete. (4) The initial impact velocity and diameter of the rockfall are the most significant parameters affecting the damage indices. In addition, a damage assessment method, with a damage zoning diagram based on the response surface method, is established for the fast assessment of the damage level of impacted HTWBP.
Journal Article