Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
161 result(s) for "Fragaria - drug effects"
Sort by:
Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening
Fleshy fruits are classically divided into climacteric and nonclimacteric types. It has long been thought that the ripening of climacteric and nonclimacteric fruits is regulated by ethylene and abscisic acid (ABA), respectively. Here, we report that sucrose functions as a signal in the ripening of strawberry (Fragaria × ananassa), a nonclimacteric fruit. Pharmacological experiments, as well as gain- and loss-of-function studies, were performed to demonstrate the critical role of sucrose in the regulation of fruit ripening. Fruit growth and development were closely correlated with a change in sucrose content. Exogenous sucrose and its nonmetabolizable analog, turanose, induced ABA accumulation in fruit and accelerated dramatically fruit ripening. A set of sucrose transporters, FaSUT1–7, was identified and characterized, among which FaSUT1 was found to be a major component responsible for sucrose accumulation during fruit development. RNA interference-induced silencing of FaSUT1 led to a decrease in both sucrose and ABA content, and arrested fruit ripening. By contrast, overexpression of FaSUT1 led to an increase in both sucrose and ABA content, and accelerated fruit ripening. In conclusion, this study demonstrates that sucrose is an important signal in the regulation of strawberry fruit ripening.
Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening
Strawberry softening is characterized by an increase in the solubilization and depolymerization of pectins from cell walls. Galactose release from pectin side chains by β-galactosidase enzymes has been proposed as one reason for the increase in soluble pectins. A putative β-galactosidase gene, FaβGal4, has been identified using a custom-made oligonucleotide-based strawberry microarray platform. FaβGal4 was expressed mainly in the receptacle during fruit ripening, and was positively regulated by abscisic acid and negatively regulated by auxins. To ascertain the role of FaβGal4 in strawberry softening, transgenic plants containing an antisense sequence of this gene under the control of the CaMV35S promoter were generated. Phenotypic analyses were carried out in transgenic plants during three consecutive growing seasons, using non-transformed plants as control. Two out of nine independent transgenic lines yielded fruits that were 30% firmer than control at the ripe stage. FaβGal4 mRNA levels were reduced by 70% in ripe fruits from these selected transgenic lines, but they also showed significant silencing of FaβGal1, although the genes did not share significant similarity. These two transgenic lines also showed an increase in pectin covalently bound to the cell wall, extracted using Na₂CO₃. The amount of galactose in cell walls from transgenic fruits was 30% higher than in control; notably, the galactose increase was larger in the 1 M KOH fraction, which is enriched in hemicellulose. These results suggest that FaβGal4 participates in the solubilization of covalently bound pectins during ripening, reducing strawberry fruit firmness.
Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid‐stress‐ripening transcription factor
Summary Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA‐stress‐ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress‐ and ripening‐induced proteins and water‐deficit stress‐induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole‐3‐acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening‐related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross‐signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.
Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene
Polyamines (PAs) participate in many plant growth and developmental processes, including fruit ripening. However, it is not clear whether PAs play a role in the ripening of strawberry (Fragaria ananassa), a model nonclimacteric plant. Here, we found that the content of the PA spermine (Spm) increased more sharply after the onset of fruit coloration than did that of the PAs putrescine (Put) or spermidine (Spd). Spm dominance in ripe fruit resulted from abundant transcripts of a strawberry S-adenosyl-L-Met decarboxylase gene (FaSAMDC), which encodes an enzyme that generates a residue needed for PA biosynthesis. Exogenous Spm and Spd promoted fruit coloration, while exogenous Put and a SAMDC inhibitor inhibited coloration. Based on transcriptome data, up- and down-regulation of FaSAMDC expression promoted and inhibited ripening, respectively, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, polyamine content, auxin (indole-3-acetic acid [IAA]) content, abscisic acid (ABA) content, and ethylene emission. Using isothermal titration calorimetry, we found that FaSAMDC also had a high enzymatic activity with a K d of 1.7 × 10-3 M. In conclusion, PAs, especially Spm, regulate strawberry fruit ripening in an ABA-dominated, IAA-participating, and ethylene-coordinated manner, and FaSAMDC plays an important role in ripening.
Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress
Drought is an important environmental stress that has negative effects on plant growth leading to a reduction in yield. In this study, the positive role of nanoparticles of SiO 2 , Se, and Se/SiO 2 (SiO 2 -NPs, Se-NPs and Se/SiO 2 -NPs) has been investigated in modulating negative effects of drought on the growth and yield of strawberry plants. Spraying of solutions containing nanoparticles of SiO 2 , Se, and Se/SiO 2 (50 and 100 mg L −1 ) improved the growth and yield parameters of strawberry plants grown under normal and drought stress conditions (30, 60, and 100%FC). Plants treated with Se/SiO 2 (100 mg L −1 ) preserved more of their photosynthetic pigments compared with other treated plants and presented higher levels of key osmolytes such as carbohydrate and proline. This treatment also increased relative water content (RWC), membrane stability index (MSI) and water use efficiency (WUE). In addition, exogenous spraying of Se/SiO 2 increased drought tolerance through increasing the activity of antioxidant enzymes including catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) as well as decreasing lipid peroxidation and hydrogen peroxide (H 2 O 2 ) content. Increase in biochemical parameters of fruits such as anthocyanin, total phenolic compounds (TPC), vitamin C and antioxidant activity (DPPH) in strawberry plants treated with Se/SiO 2 under drought stress revealed the positive effects of these nanoparticles in improving fruit quality and nutritional value. In general, our results supported the positive effect of the application of selenium and silicon nanoparticles, especially the absolute role of Se/SiO 2 (100 mg L −1 ), on the management of harmful effects of soil drought stress not only in strawberry plants, but also in other agricultural crops.
Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits
NAC proteins are a family of transcription factors which have a variety of important regulatory roles in plants. They present a very well conserved group of NAC subdomains in the N-terminal region and a highly variable domain at the C-terminus. Currently, knowledge concerning NAC family in the strawberry plant remains very limited. In this work, we analyzed the NAC family of Fragaria vesca, and a total of 112 NAC proteins were identified after we curated the annotations from the version 4.0.a1 genome. They were placed into the ligation groups (pseudo-chromosomes) and described its physicochemical and genetic features. A microarray transcriptomic analysis showed six of them expressed during the development and ripening of the Fragaria x ananassa fruit. Their expression patterns were studied in fruit (receptacle and achenes) in different stages of development and in vegetative tissues. Also, the expression level under different hormonal treatments (auxins, ABA) and drought stress was investigated. In addition, they were clustered with other NAC transcription factor with known function related to growth and development, senescence, fruit ripening, stress response, and secondary cell wall and vascular development. Our results indicate that these six strawberry NAC proteins could play different important regulatory roles in the process of development and ripening of the fruit, providing the basis for further functional studies and the selection for NAC candidates suitable for biotechnological applications.
Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways
Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel role for H2S in plant priming, and in particular in a fruit crop such as strawberry.
Thidiazuron Enhances Strawberry Shoot Multiplication by Regulating Hormone Signal Transduction Pathways
Tissue culture-based rapid propagation is critical for genetic improvement and virus-free production of strawberries (Fragaria × ananassa). This study evaluated the optimal concentration of thidiazuron (TDZ) for shoot multiplication and explored the underlying molecular mechanisms. Strawberry explants were treated with TDZ at concentrations of 0, 0.025, 0.05, 0.1, and 0.4 mg·L−1 in vitro, and growth, physiological changes, and transcriptomic profiles were analyzed after four weeks. The results identified 0.05 mg·L−1 TDZ as the most effective concentration for shoot proliferation, yielding a significant increase in leaf number. However, TDZ application inhibited plant height and reduced chlorophyll, carotenoid, and soluble sugar contents. Physiological analyses revealed that TDZ decreased endogenous cytokinin levels while elevating auxin concentrations. Transcriptomic analysis showed that TDZ suppressed cytokinin biosynthesis and up-regulated cytokinin oxidase expression, thereby modulating hormone homeostasis. Additionally, TDZ enhanced the cytokinin signaling pathway, which is crucial for cell division and shoot initiation, and influenced auxin, gibberellin, and brassinosteroid pathways to regulate differentiation. These findings suggest that TDZ promotes strawberry shoot multiplication primarily through hormone signal transduction, providing insights for optimizing tissue culture protocols.
SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an Ortholog of OPEN STOMATA1, Is a Negative Regulator of Strawberry Fruit Development and Ripening
Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria×ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels ofFaSnRK2.6transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level ofFaSnRK2.6expression declined. Furthermore, manipulating the level ofFaSnRK2.6expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening.
Transcriptome sequencing reveals jasmonate playing a key role in ALA-induced osmotic stress tolerance in strawberry
Background Strawberry ( Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement. However, the regulatory mechanism remains unclear. Results In the current study, the underlying mechanism by determination of various physiological indices, as well as transcriptome sequencing and the weighted gene correlation network analysis (WGCNA) of 10 mg L − 1 ALA treated strawberry leaves and roots stressed by 20% polyethylene glycol 6000 (PEG) treatment. The findings indicated that ALA enhanced osmotic stress tolerance reflected by enhancing relative water content (RWC), root development, gas exchange parameters and antioxidant enzyme activities, and decreasing the leaf H 2 O 2 and malondialdehyde (MDA) content. Transcriptome analysis showed that the differentially expressed genes (DEGs) stimulated by exogenous ALA were mostly associated with the secondary biosynthesis and hormones signaling pathways, especially jasmonates (JAs). The JA derivative (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) was found to be elevated in the strawberry leaves and roots treated with ALA under PEG stress. Additionally, exogenous methyl jasmonate (MeJA) alleviated osmotic stress damages similarly to ALA, while its synthesis inhibitor diethyldithiocarbamate (DIECA) led to adverse effects on strawberries, which can be relieved by further additional application of ALA. Conclusions Theses findings suggest that JAs can act as the necessary signaling molecules involved in ALA-improved osmotic stress tolerance networks. This provides a new insight for further study on how ALA can help plants cope with water stress.