Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
606 result(s) for "Fragaria - physiology"
Sort by:
Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening
The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle y/n/s-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCEDl), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FENCED!-downregulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA-and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA.
Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress
Drought is an important environmental stress that has negative effects on plant growth leading to a reduction in yield. In this study, the positive role of nanoparticles of SiO 2 , Se, and Se/SiO 2 (SiO 2 -NPs, Se-NPs and Se/SiO 2 -NPs) has been investigated in modulating negative effects of drought on the growth and yield of strawberry plants. Spraying of solutions containing nanoparticles of SiO 2 , Se, and Se/SiO 2 (50 and 100 mg L −1 ) improved the growth and yield parameters of strawberry plants grown under normal and drought stress conditions (30, 60, and 100%FC). Plants treated with Se/SiO 2 (100 mg L −1 ) preserved more of their photosynthetic pigments compared with other treated plants and presented higher levels of key osmolytes such as carbohydrate and proline. This treatment also increased relative water content (RWC), membrane stability index (MSI) and water use efficiency (WUE). In addition, exogenous spraying of Se/SiO 2 increased drought tolerance through increasing the activity of antioxidant enzymes including catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) as well as decreasing lipid peroxidation and hydrogen peroxide (H 2 O 2 ) content. Increase in biochemical parameters of fruits such as anthocyanin, total phenolic compounds (TPC), vitamin C and antioxidant activity (DPPH) in strawberry plants treated with Se/SiO 2 under drought stress revealed the positive effects of these nanoparticles in improving fruit quality and nutritional value. In general, our results supported the positive effect of the application of selenium and silicon nanoparticles, especially the absolute role of Se/SiO 2 (100 mg L −1 ), on the management of harmful effects of soil drought stress not only in strawberry plants, but also in other agricultural crops.
Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways
Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel role for H2S in plant priming, and in particular in a fruit crop such as strawberry.
‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit
Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
High-temperature stress in strawberry: understanding physiological, biochemical and molecular responses
Main conclusionHeat stress reduces strawberry growth and fruit quality by impairing photosynthesis, disrupting hormone regulation, and altering mineral nutrition. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic and metabolomic under high temperatures.Garden strawberry is a globally cultivated, economically important fruit crop highly susceptible to episodic heat waves and chronically rising temperatures associated with climate change. Heat stress negatively affects the growth, development, and quality of strawberries. Elevated temperatures affect photosynthesis, respiration, water balance, hormone signaling, and carbohydrate metabolism in strawberries. Heat stress reduces the size and number of leaves, the number of crowns, the differentiation of flower buds, and the viability of pollen and fruit set, ultimately leading to a lower yield. On a physiological level, heat stress reduces membrane stability, increases the production of reactive oxygen species, and reduces the antioxidant capacity of strawberries. Heat-tolerant varieties have better physiological and biochemical adaptation mechanisms compared to heat-sensitive varieties. Breeding heat-tolerant strawberry cultivars involves selection for traits such as increased leaf temperature, membrane thermostability, and chlorophyll content. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic, metabolomic, and ionomic reprogramming at high temperatures. Integrative-omics approaches combine multiple omics datasets to obtain a systemic understanding of the responses to heat stress in strawberries. This article summarizes the deciphering of strawberry responses to heat stress using physiological, biochemical, and molecular approaches that will enable the development of resilient adaptation strategies that sustain strawberry production under global climate change.
Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening
Fruit ripening involves a complex interplay among plant hormones. Strawberry is a model for studies on non-climacteric fruit ripening. However, the knowledge on how plant hormones are involved in strawberry ripening is still limited. To understand hormonal actions in the ripening process, we performed genome-wide transcriptome and hormonal analysis for the five major hormones (abscisic acid and catabolites, auxins, cytokinins, gibberellins, and ethylene) in achenes and receptacles (flesh) at different ripening stages of the woodland strawberry Fragaria vesca. Our results demonstrate that the pre-turning stage (a stage with white flesh and red achenes defined in this study) is the transition stage from immature to ripe fruits. The combinatorial analyses of hormone content, transcriptome data, and exogenous hormone treatment indicate that auxin is synthesized predominantly in achenes, while abscisic acid (ABA), bioactive free base cytokinins, gibberellins, and ethylene are mainly produced in receptacles. Furthermore, gibberellin may delay ripening, while ethylene and cytokinin are likely involved at later stages of the ripening process. Our results also provide additional evidence that ABA promotes ripening, while auxin delays it. Although our hormone analysis demonstrates that the total auxin in receptacles remains relatively low and unchanged during ripening, our experimental evidence further indicates that ABA likely enhances expression of the endoplasmic reticulum-localized auxin efflux carrier PIN-LIKES, which may subsequently reduce the auxin level in nucleus. This study provides a global picture for hormonal regulation of non-climacteric strawberry fruit ripening and also evidence for a possible mechanism of ABA and auxin interaction in the ripening process.
Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening
The receptacle of the strawberry (Fragaria × ananassa) fruit accounts for the main properties of the ripe fruit for human consumption. As it ripens, it undergoes changes similar to other fruits in sugar : acid ratio, volatile production and cell wall softening. However, the main regulators of this process have not yet been reported. The white stage marks the initiation of the ripening process, and we had previously reported a peak of expression for a FaGAMYB gene. Transient silencing of FaGAMYB using RNAi and further determination of changes in global gene expression by RNAseq, and composition of primary and secondary metabolites have been used to investigate the role played by this gene during the development of the receptacle. Down-regulation of FaGAMYB caused an arrest in the ripening of the receptacle and inhibited colour formation. Consistent with this, several transcription factors associated with the regulation of flavonoid biosynthetic pathway showed altered expression. FaGAMYB silencing also caused a reduction of ABA biosynthesis and sucrose content. Interestingly, exogenous ABA application to the RNAI-transformed receptacle reversed most defects caused by FaGAMYB down-regulation. The study assigns a key regulatory role to FaGAMYB in the initiation of strawberry receptacle ripening and acting upstream of the known regulator ABA.
Herbivore and pollinator body size effects on strawberry fruit quality
Land use change affects both pollinator and herbivore populations with consequences for crop production. Recent evidence also shows that land use change affects insect traits, with intraspecific body size of pollinators changing across landscape gradients. However, the consequences on crop production of trait changes in different plant interactors have not been well-studied. We hypothesized that changes in body size of key species can be enough to affect crop productivity, and therefore looked at how the field-realistic variation in body size of both an important pollinator, Bombus impatiens (Cresson), and a key pest herbivore, Lygus lineolaris (Palisot), can affect fruit size and damage in strawberry. First, we determined if pests vary in body size along land use gradients as prior studies have documented for pollinators; and second, we tested under controlled conditions how the individual and combined changes in size of an important pollinator and a key herbivore pest affect strawberry fruit production. The key herbivore pest was smaller in landscapes with more natural and semi-natural habitat, confirming that herbivore functional traits can vary along a land use gradient. Additionally, herbivore size, and not pollinator size, marginally affected fruit production—with plants exposed to larger pests producing smaller fruits. Our findings suggest that land use changes at the landscape level affect crop production not just through changes in the species diversity of insect communities that interact with the plant, but also through changes in body size traits.
A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees
Microbes can establish mutualistic interactions with plants and insects. Here we track the movement of an endophytic strain of Streptomyces bacteria throughout a managed strawberry ecosystem. We show that a Streptomyces isolate found in the rhizosphere and on flowers protects both the plant and pollinating honeybees from pathogens (phytopathogenic fungus Botrytis cinerea and pathogenic bacteria, respectively). The pollinators can transfer the Streptomyces bacteria among flowers and plants, and Streptomyces can move into the plant vascular bundle from the flowers and from the rhizosphere. Our results present a tripartite mutualism between Streptomyces , plant and pollinator partners. Microbes can establish mutualistic interactions with plants and insects. Here, Kim et al. show that Streptomyces bacteria can protect strawberry plants and honeybees from pathogens, can move into the plant vascular tissue from soil and from flowers, and are transferred among flowers by the pollinators.
Transcriptome sequencing reveals jasmonate playing a key role in ALA-induced osmotic stress tolerance in strawberry
Background Strawberry ( Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement. However, the regulatory mechanism remains unclear. Results In the current study, the underlying mechanism by determination of various physiological indices, as well as transcriptome sequencing and the weighted gene correlation network analysis (WGCNA) of 10 mg L − 1 ALA treated strawberry leaves and roots stressed by 20% polyethylene glycol 6000 (PEG) treatment. The findings indicated that ALA enhanced osmotic stress tolerance reflected by enhancing relative water content (RWC), root development, gas exchange parameters and antioxidant enzyme activities, and decreasing the leaf H 2 O 2 and malondialdehyde (MDA) content. Transcriptome analysis showed that the differentially expressed genes (DEGs) stimulated by exogenous ALA were mostly associated with the secondary biosynthesis and hormones signaling pathways, especially jasmonates (JAs). The JA derivative (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) was found to be elevated in the strawberry leaves and roots treated with ALA under PEG stress. Additionally, exogenous methyl jasmonate (MeJA) alleviated osmotic stress damages similarly to ALA, while its synthesis inhibitor diethyldithiocarbamate (DIECA) led to adverse effects on strawberries, which can be relieved by further additional application of ALA. Conclusions Theses findings suggest that JAs can act as the necessary signaling molecules involved in ALA-improved osmotic stress tolerance networks. This provides a new insight for further study on how ALA can help plants cope with water stress.