Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34,407
result(s) for
"Fragmentation"
Sort by:
The differential production cross section of the phi(1020) meson in root s=7 TeV pp collisions measured with the ATLAS detector
2014
A measurement is presented of the phi x BR(phi -> K+ K-) production cross section at root s = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 mu b(-1), collected with the ATLAS experiment at the LHC. Selection of phi(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, pT, phi, and rapidity, y(phi), of the phi(1020) meson in the fiducial region 500 < pT,phi < 1200MeV, vertical bar y phi| < 0.8, kaon p(T), (K) > 230 MeV and kaon momentum p(K) < 800 MeV. The integrated phi(1020)-meson production cross section in this fiducial range is measured to be sigma(phi) x BR(phi -> K+ K-) = 570 +/- 8 (stat) +/- 66 (syst) +/- 20 (lumi) mu b.
Journal Article
Patch‐scale edge effects do not indicate landscape‐scale fragmentation effects
2024
Negative landscape‐scale fragmentation effects are often inferred from negative patch‐scale edge effects. I tested this cross‐scale extrapolation using two evaluations. First, I searched for studies that estimated the direction of both a patch‐scale edge effect and a landscape‐scale fragmentation effect. The directions were concordant and discordant in 55% and 45% of cases, respectively. Second, I extracted from the literature a sample of landscape‐scale fragmentation effects on individual species. Then, for each species I searched for studies from which I could calculate the slope of its patch‐scale edge effect. Species showing negative patch‐scale edge effects were nearly equally likely to show negative or positive landscape‐scale fragmentation effects, and likewise for species showing positive patch‐scale edge effects. The results mean that the efficacy of policies related to habitat fragmentation cannot be inferred from observed patch‐scale edge effects. Such policies require landscape‐scale evidence, comparing species' responses in landscapes with different levels of fragmentation.
Journal Article
A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project
by
Ferraz, Gonçalo
,
Fahrig, Lenore
,
Didham, Raphael K.
in
Agriculture
,
Altitude
,
Arecaceae - physiology
2011
Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
Journal Article
Lifestyle-, environmental-, and additional health factors associated with an increased sperm DNA fragmentation: a systematic review and meta-analysis
2023
Introduction
Infertility affects one in every six couples in developed countries, and approximately 50% is of male origin. In 2021, sperm DNA fragmentation (SDF) testing became an evidence-based test for fertility evaluations depicting fertility more clearly than standard semen parameters. Therefore, we aimed to summarize the potential prognostic factors of a higher SDF.
Methods
We conducted a systematic search in three medical databases and included studies investigating any risk factors for SDF values. We calculated mean differences (MD) in SDF with 95% confidence interval (CI) for exposed and non-exposed individuals.
Results
We included 190 studies in our analysis. In the group of associated health conditions, varicocele (MD = 13.62%, CI: 9.39–17.84) and impaired glucose tolerance (MD = 13.75%, CI: 6.99–20.51) had the most significant increase in SDF. Among malignancies, testicular tumors had the highest impact, with a maximum of MD = 11.3% (CI: 7.84–14.76). Among infections, the overall effects of both
Chlamydia
and HPV were negligible. Of lifestyle factors, smoking had the most disruptive effect on SDF – an increase of 9.19% (CI: 4.33–14.06). Different periods of sexual abstinence did not show significant variations in SDF values. Age seemed to have a more drastic effect on SDF from age 50 onwards, with a mean difference of 12.58% (CI: 7.31–17.86). Pollution also had a detrimental effect – 9.68% (CI: 6.85–12.52).
Conclusion
Of the above risk factors, varicocele, impaired glucose tolerance, testicular tumors, smoking, pollution, and paternal age of over 50 were associated with the highest SDF.
Trial registration
CRD42021282533.
Journal Article
Understanding and modelling wildfire regimes: an ecological perspective
2021
Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes—and their interactions with human activities—are far from being comprehensively understood. There is a lack of clarity about the ‘causes’ of wildfire, and about how ecosystems could be managed for the co-existence of wildfire and people. We present evidence supporting an ecosystem-centred framework for improved understanding and modelling of wildfire. Wildfire has a long geological history and is a pervasive natural process in contemporary plant communities. In some biomes, wildfire would be more frequent without human settlement; in others they would be unchanged or less frequent. A world without fire would have greater forest cover, especially in present-day savannas. Many species would be missing, because fire regimes have co-evolved with plant traits that resist, adapt to or promote wildfire. Certain plant traits are favoured by different fire frequencies, and may be missing in ecosystems that are normally fire-free. For example, post-fire resprouting is more common among woody plants in high-frequency fire regimes than where fire is infrequent. The impact of habitat fragmentation on wildfire crucially depends on whether the ecosystem is fire-adapted. In normally fire-free ecosystems, fragmentation facilitates wildfire starts and is detrimental to biodiversity. In fire-adapted ecosystems, fragmentation inhibits fires from spreading and fire suppression is detrimental to biodiversity. This interpretation explains observed, counterintuitive patterns of spatial correlation between wildfire and potential ignition sources. Lightning correlates positively with burnt area only in open ecosystems with frequent fire. Human population correlates positively with burnt area only in densely forested regions. Models for vegetation-fire interactions must be informed by insights from fire ecology to make credible future projections in a changing climate.
Journal Article
Application of Dynamic Fragmentation Methods in Multimedia Databases: A Review
by
Machorro-Cano, Isaac
,
Rodríguez-Mazahua, Lisbeth
,
Alor-Hernández, Giner
in
Classification
,
Cost analysis
,
cost model
2020
Fragmentation is a design technique widely used in multimedia databases, because it produces substantial benefits in reducing response times, causing lower execution costs in each operation performed. Multimedia databases include data whose main characteristic is their large size, therefore, database administrators face a challenge of great importance, since they must contemplate the different qualities of non-trivial data. These databases over time undergo changes in their access patterns. Different fragmentation techniques presented in related studies show adequate workflows, however, some do not contemplate changes in access patterns. This paper aims to provide an in-depth review of the literature related to dynamic fragmentation of multimedia databases, to identify the main challenges, technologies employed, types of fragmentation used, and characteristics of the cost model. This review provides valuable information for database administrators by showing essential characteristics to perform proper fragmentation and to improve the performance of fragmentation schemes. The reduction of costs in fragmentation methods is one of the most desired main properties. To fulfill this objective, the works include cost models, covering different qualities. In this analysis, a set of characteristics used in the cost models of each work is presented to facilitate the creation of a new cost model including the most used qualities. In addition, different data sets or reference points used in the testing stage of each work analyzed are presented.
Journal Article
Global forest fragmentation change from 2000 to 2020
2023
A comprehensive quantification of global forest fragmentation is urgently required to guide forest protection, restoration and reforestation policies. Previous efforts focused on the static distribution patterns of forest remnants, potentially neglecting dynamic changes in forest landscapes. Here, we map global distribution of forest fragments and their temporal changes between 2000 and 2020. We find that forest landscapes in the tropics were relatively intact, yet these areas experienced the most severe fragmentation over the past two decades. In contrast, 75.1% of the world’s forests experienced a decrease in fragmentation, and forest fragmentation in most fragmented temperate and subtropical regions, mainly in northern Eurasia and South China, declined between 2000 and 2020. We also identify eight modes of fragmentation that indicate different recovery or degradation states. Our findings underscore the need to curb deforestation and increase connectivity among forest fragments, especially in tropical areas.
Forest losses and gains are highly dynamic processes. Here, the authors present a forest fragmentation index to map distribution and temporal changes of forest fragments globally, revealing major trends and patterns during the first two decades of the 21st century.
Journal Article
Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide
by
Zarfl, Christiane
,
Barbarossa, Valerio
,
Schmitt, Rafael J. P.
in
Biological Sciences
,
Dam construction
,
Dam effects
2020
Dams contribute to water security, energy supply, and flood protection but also fragment habitats of freshwater species. Yet, a global species-level assessment of dam-induced fragmentation is lacking. Here, we assessed the degree of fragmentation of the occurrence ranges of ∼10,000 lotic fish species worldwide due to ∼40,000 existing large dams and ∼3,700 additional future large hydropower dams. Per river basin, we quantified a connectivity index (CI) for each fish species by combining its occurrence range with a high-resolution hydrography and the locations of the dams. Ranges of nondiadromous fish species were more fragmented (less connected) (CI = 73 ± 28%; mean ± SD) than ranges of diadromous species (CI = 86 ± 19%). Current levels of fragmentation were highest in the United States, Europe, South Africa, India, and China. Increases in fragmentation due to future dams were especially high in the tropics, with declines in CI of ∼20 to 40 percentage points on average across the species in the Amazon, Niger, Congo, Salween, and Mekong basins. Our assessment can guide river management at multiple scales and in various domains, including strategic hydropower planning, identification of species and basins at risk, and prioritization of restoration measures, such as dam removal and construction of fish bypasses.
Journal Article
Ecological Responses to Habitat Fragmentation Per Se
2017
For this article, I reviewed empirical studies finding significant ecological responses to habitat fragmentation per se-in other words, significant responses to fragmentation independent of the effects of habitat amount (hereafter referred to as habitat fragmentation). I asked these two questions: Are most significant responses to habitat fragmentation negative or positive? And do particular attributes of species or landscapes lead to a predominance of negative or positive significant responses? I found 118 studies reporting 381 significant responses to habitat fragmentation independent of habitat amount
.
Of these responses, 76% were positive. Most significant fragmentation effects were positive, irrespective of how the authors controlled for habitat amount, the measure of fragmentation, the taxonomic group, the type of response variable, or the degree of specialization or conservation status of the species or species group. No support was found for predictions that most significant responses to fragmentation should be negative in the tropics, for species with larger movement ranges, or when habitat amount is low; most significant fragmentation effects were positive in all of these cases. Thus, although 24% of significant responses to habitat fragmentation were negative, I found no conditions in which most responses were negative. Authors suggest a wide range of possible explanations for significant positive responses to habitat fragmentation: increased functional connectivity, habitat diversity, positive edge effects, stability of predator-prey host-parasitoid systems, reduced competition, spreading of risk, and landscape complementation. A consistent preponderance of positive significant responses to fragmentation implies that there is no justification for assigning lower conservation value to a small patch than to an equivalent area within a large patch-instead, it implies just the opposite. This finding also suggests that land sharing will usually provide higher ecological value than land sparing.
Journal Article
Global impacts of future urban expansion on terrestrial vertebrate diversity
2022
Rapid urban expansion has profound impacts on global biodiversity through habitat conversion, degradation, fragmentation, and species extinction. However, how future urban expansion will affect global biodiversity needs to be better understood. We contribute to filling this knowledge gap by combining spatially explicit projections of urban expansion under shared socioeconomic pathways (SSPs) with datasets on habitat and terrestrial biodiversity (amphibians, mammals, and birds). Overall, future urban expansion will lead to 11–33 million hectares of natural habitat loss by 2100 under the SSP scenarios and will disproportionately cause large natural habitat fragmentation. The urban expansion within the current key biodiversity priority areas is projected to be higher (e.g., 37–44% higher in the WWF’s Global 200) than the global average. Moreover, the urban land conversion will reduce local within-site species richness by 34% and species abundance by 52% per 1 km grid cell, and 7–9 species may be lost per 10 km cell. Our study suggests an urgent need to develop a sustainable urban development pathway to balance urban expansion and biodiversity conservation.
Population growth in the coming decades will lead to increasing land conversion to urban areas. Here, the authors use spatially explicit projections of global urban expansion to analyze its effects on habitat changes, and terrestrial mammals, birds and amphibians under the main shared socioeconomic pathways.
Journal Article