Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
55,898 result(s) for "Frameworks"
Sort by:
Mobile app development with Ionic : cross-platform apps with Ionic, Angular, and Cordova
\"Learn how to build app store-ready hybrid apps with the Ionic framework built on top of Apache Cordova (formerly PhoneGap) and Angular. This revised guide shows you how to use Ionic's tools and services to develop apps with HTML, CSS, and TypeScript, rather than rely on platform-specific solutions found in Android, iOS, and Windows Universal\"--Back cover.
Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning
Air filtration has become an essential need for passive pollution control. However, most of the commercial air purifiers rely on dense fibrous filters, which have good particulate matter (PM) removal capability but poor biocidal effect. Here we present the photocatalytic bactericidal properties of a series of metal-organic frameworks (MOFs) and their potentials in air pollution control and personal protection. Specifically, a zinc-imidazolate MOF (ZIF-8) exhibits almost complete inactivation of Escherichia coli ( E. coli ) (>99.9999% inactivation efficiency) in saline within 2 h of simulated solar irradiation. Mechanistic studies indicate that photoelectrons trapped at Zn + centers within ZIF-8 via ligand to metal charge transfer (LMCT) are responsible for oxygen-reduction related reactive oxygen species (ROS) production, which is the dominant disinfection mechanism. Air filters fabricated from ZIF-8 show remarkable performance for integrated pollution control, with >99.99% photocatalytic killing efficiency against airborne bacteria in 30 min and 97% PM removal. This work may shed light on designing new porous solids with photocatalytic antibiotic capability for public health protection. Personal protective air filtration masks are becoming increasingly desirable, but most commercial air purifiers have poor biocidal capabilities. Here the authors fabricate metal–organic framework-based air filters with both high particulate matter removal efficiencies and photocatalytic bactericidal properties.
OS X app development with Cloudkit and Swift
This text is your step-by-step guide to learning OS X app development using CloudKit and Swift. All the development will be done using Apple's Swift 2 programming language. You'll see how to define data for your app and build a prototype with Sketch 3 and Keynote. Using CloudKit to store OS X application data, and separate public and private data, readers will learn how to control which data can or cannot be changed in a public data store. This title takes you from prototyping your app with Sketch 3 all the way through building a data-driven app using CloudKit, and everything in between.
Porous organic polymers: a progress report in China
Porous organic polymers (POPs) are porous materials composed of light elements such as C, H, N, and O. The benign characters, including large surface area, good physical and chemical stability, well-defined chemical composition, wide ranges of monomer selection, and strong designability, have made POPs one of the frontiers in materials research. In this review, we discussed the design and synthesis of various POP materials that mainly led by Chinese scientists, including conjugated microporous polymers (CMPs), porous aromatic frameworks (PAFs), and hypercrosslinked porous polymers (HCPs), as well as crystalline POPs comprised of covalent organic frameworks (COFs) and a special class of COFs with triazine rings, covalent triazine frameworks (CTFs), and supramolecular organic frameworks (SOFs), and sorted out their main applications in adsorption, separation, catalysis, and electrochemistry fields.
collapse of the Kyoto Protocol and the struggle to slow global warming
Even as the evidence of global warming mounts, the international response to this serious threat is coming unraveled. The United States has formally withdrawn from the 1997 Kyoto Protocol; other key nations are facing difficulty in meeting their Kyoto commitments; and developing countries face no limit on their emissions of the gases that cause global warming. In this clear and cogent book-reissued in paperback with an afterword that comments on recent events--David Victor explains why the Kyoto Protocol was never likely to become an effective legal instrument. He explores how its collapse offers opportunities to establish a more realistic alternative. Global warming continues to dominate environmental news as legislatures worldwide grapple with the process of ratification of the December 1997 Kyoto Protocol. The collapse of the November 2000 conference at the Hague showed clearly how difficult it will be to bring the Kyoto treaty into force. Yet most politicians, policymakers, and analysts hailed it as a vital first step in slowing greenhouse warming. David Victor was not among them. Kyoto's fatal flaw, Victor argues, is that it can work only if emissions trading works. The Protocol requires industrialized nations to reduce their emissions of greenhouse gases to specific targets. Crucially, the Protocol also provides for so-called \"emissions trading,\" whereby nations could offset the need for rapid cuts in their own emissions by buying emissions credits from other countries. But starting this trading system would require creating emission permits worth two trillion dollars--the largest single invention of assets by voluntary international treaty in world history. Even if it were politically possible to distribute such astronomical sums, the Protocol does not provide for adequate monitoring and enforcement of these new property rights. Nor does it offer an achievable plan for allocating new permits, which would be essential if the system were expanded to include developing countries. The collapse of the Kyoto Protocol--which Victor views as inevitable--will provide the political space to rethink strategy. Better alternatives would focus on policies that control emissions, such as emission taxes. Though economically sensible, however, a pure tax approach is impossible to monitor in practice. Thus, the author proposes a hybrid in which governments set targets for both emission quantities and tax levels. This offers the important advantages of both emission trading and taxes without the debilitating drawbacks of each. Individuals at all levels of environmental science, economics, public policy, and politics-from students to professionals--and anyone else hoping to participate in the debate over how to slow global warming will want to read this book.
Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications
The utilization of polymer/metal organic framework (MOF) nanocomposites in various biomedical applications has been widely studied due to their unique properties that arise from MOFs or hybrid composite systems. This review focuses on the types of polymer/MOF nanocomposites used in drug delivery and imaging applications. Initially, a comprehensive introduction to the synthesis and structure of MOFs and bio-MOFs is presented. Subsequently, the properties and the performance of polymer/MOF nanocomposites used in these applications are examined, in relation to the approach applied for their synthesis: (i) non-covalent attachment, (ii) covalent attachment, (iii) polymer coordination to metal ions, (iv) MOF encapsulation in polymers, and (v) other strategies. A critical comparison and discussion of the effectiveness of polymer/MOF nanocomposites regarding their synthesis methods and their structural characteristics is presented.
Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy
Selective delivery of photosensitizers to mitochondria of cancer cells can enhance the efficacy of photodynamic therapy (PDT). Though cationic Ru-based photosensitizers accumulate in mitochondria, they require excitation with less penetrating short-wavelength photons, limiting their application in PDT. We recently discovered X-ray based cancer therapy by nanoscale metal–organic frameworks (nMOFs) via enhancing radiotherapy (RT) and enabling radiodynamic therapy (RDT). Herein we report Hf-DBB-Ru as a mitochondria-targeted nMOF for RT-RDT. Constructed from Ru-based photosensitizers, the cationic framework exhibits strong mitochondria-targeting property. Upon X-ray irradiation, Hf-DBB-Ru efficiently generates hydroxyl radicals from the Hf 6 SBUs and singlet oxygen from the DBB-Ru photosensitizers to lead to RT-RDT effects. Mitochondria-targeted RT-RDT depolarizes the mitochondrial membrane to initiate apoptosis of cancer cells, leading to significant regression of colorectal tumors in mouse models. Our work establishes an effective strategy to selectively target mitochondria with cationic nMOFs for enhanced cancer therapy via RT-RDT with low doses of deeply penetrating X-rays. Photosensitizers delivered to mitochondria of cancer cells can enhance photodynamic therapy. Here, the authors report mitochondria-targeted radiation therapy and radiodynamic therapy of colorectal cancer models with a cationic nanoscale metal-organic framework to overcome shallow light penetration of Ru-based photosensitizers.
New emerging materials with potential antibacterial activities
The increasing prevalence of multidrug-resistant pathogens is a critical public health issue, necessitating the development of alternative antibacterial agents. Examples of these pathogens are methicillin-resistant Staphylococcus aureus (MRSA) and the emergence of “pan-resistant” Gram-negative strains, such as Pseudomonas aeruginosa and Acinetobacter baumannii , which occurred more recently. This review examines various emerging materials with significant antibacterial activities. Among these are nanomaterials such as quantum dots, carbon quantum dots, metal–organic frameworks (MOFs), covalent organic frameworks (COFs), and layered double hydroxides, all of which demonstrate excellent antibacterial properties. Interestingly, including antibacterial agents within the structure of these materials can help avoid bacterial resistance and improve the long-term efficacy of the materials. Additionally, the antibacterial potential of liquid solvents, including ionic liquids and both deep eutectic solvents and natural deep eutectic solvents, is explored. The review discusses the synthesis methods, advantages, and antibacterial efficacy of these new materials. By providing a comprehensive overview of these innovative materials, this review aims to contribute to the ongoing search for effective solutions to combat antibiotic resistance. Key studies demonstrating antibacterial effects against pathogens like Escherichia coli , Staphylococcus aureus , and multidrug-resistant strains are summarized. MOFs have exhibited antibacterial properties through controlled ion release and surface interactions. COFs have enhanced the efficacy of encapsulated antibiotics and displayed intrinsic antibacterial activity. Other nanomaterials, such as quantum dots, have generated reactive oxygen species, leading to microbial inactivation. This review aims to provide insights into these new classes of antibacterial materials and highlight them for addressing the global crisis of antibiotic resistance. Key points • Nanomaterials show strong antibacterial effects against drug-resistant bacteria • Emerging solvents like ionic liquids offer novel solutions for bacterial resistance • MOFs and COFs enhance antibiotic efficacy, showing promise in combating resistance
Nanoparticle/Metal–Organic Framework Composites for Catalytic Applications: Current Status and Perspective
Nanoparticle/metal–organic frameworks (MOF) based composites have recently attracted significant attention as a new class of catalysts. Such composites possess the unique features of MOFs (including clearly defined crystal structure, high surface area, single site catalyst, special confined nanopore, tunable, and uniform pore structure), but avoid some intrinsic weaknesses (like limited electrical conductivity and lack in the “conventional” catalytically active sites). This review summarizes the developed strategies for the fabrication of nanoparticle/MOF composites for catalyst uses, including the strategy using MOFs as host materials to hold and stabilize the guest nanoparticles, the strategy with subsequent MOF growth/assembly around pre-synthesized nanoparticles and the strategy mixing the precursors of NPs and MOFs together, followed by self-assembly process or post-treatment or post-modification. The applications of nanoparticle/MOF composites for CO oxidation, CO2 conversion, hydrogen production, organic transformations, and degradation of pollutants have been discussed. Superior catalytic performances in these reactions have been demonstrated. Challenges and future developments are finally addressed.