Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
45,309 result(s) for "Fresh water"
Sort by:
Chemical and microbial diversity covary in fresh water to influence ecosystem functioning
Invisible to the naked eye lies a tremendous diversity of organic molecules and organisms that make major contributions to important biogeochemical cycles. However, how the diversity and composition of these two communities are interlinked remains poorly characterized in fresh waters, despite the potential for chemical and microbial diversity to promote one another. Here we exploited gradients in chemodiversity within a common microbial pool to test how chemical and biological diversity covary and characterized the implications for ecosystem functioning. We found that both chemodiversity and genes associated with organic matter decomposition increased as more plant litterfall accumulated in experimental lake sediments, consistent with scenarios of future environmental change. Chemical and microbial diversity were also positively correlated, with dissolved organic matter having stronger effects on microbes than vice versa. Under our experimental scenarios that increased sediment organic matter from 5 to 25% or darkened overlying waters by 2.5 times, the resulting increases in chemodiversity could increase greenhouse gas concentrations in lake sediments by an average of 1.5 to 2.7 times, when all of the other effects of litterfall and water color were considered. Our results open a major new avenue for research in aquatic ecosystems by exposing connections between chemical and microbial diversity and their implications for the global carbon cycle in greater detail than ever before.
Freshwater salinization syndrome on a continental scale
Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.
Freshwater governance for the 21st century
\"The objective of this book is to broadly illustrate the key aspects of water governance, mapping the spectrum of decision-making from techno-centric and eco-centric approaches, to hybrid concepts and people-centric approaches. Topics covered include the challenges for water-governance models, the polycentric model, the integration challenge, water in the decision-making hierarchy, and the rise of water-sensitive design, while also taking into account interdependencies between stakeholders, as well as the issue of scale. The book's content is presented in an integrated and comprehensive format, building on detailed case studies from around the world and the authors' working experiences in the water sector\"--Back cover.
Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems
The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth’s largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4–alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5–23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries.
The sea floor : an introduction to marine geology
This textbook deals with the most important items in Marine Geology, including some pioneer work. The list of topics has grown greatly in the last few decades beyond the items identified by Eugen Seibold as central and now includes prominently such things as methane and climate change; that is, the carbon cycle and the Earth system as a whole. Relevant geophysical, geochemical, sedimentological and paleontological methods are shortly described. They should allow the reader to comment on new results about plate tectonics, marine sedimentation from the coasts to the deep sea, climatological aspects, paleoceanology and the use of the sea floor. The text tries to transmit to the reader excitement of marine geological research both aboard and in modern laboratories. Basic mineralogical, geochemical, biological and other relevant data and a detailed list of books and symposia are given in an Appendix. This Introduction builds on the third edition of \"The Sea Floor\" by E. Seibold and W.H. Berger. While much of the original text was written by Seibold, a considerable portion of the material presented in this edition is new, taking into account the recent great shift in marine geological research, some of it with great relevance to human concerns arising in a rapidly changing world.
High Diversity of the Viral Community from an Antarctic Lake
Viruses are the most abundant biological entities and can control microbial communities, but their identity in terrestrial and freshwater Antarctic ecosystems is unknown. The genetic structure of an Antarctic lake viral community revealed unexpected genetic richness distributed across the highest number of viral families that have been found to date in aquatic viral metagenomes. In contrast to other known aquatic viromes, which are dominated by bacteriophage sequences, this Antarctic virus assemblage had a large proportion of sequences related to eukaryotic viruses, including phycodnaviruses and single-stranded DNA (ssDNA) viruses not previously identified in aquatic environments. We also observed that the transition from an ice-covered lake in spring to an open-water lake in summer led to a change from a ssDNA- to a double-stranded DNA-virus-dominated assemblage, possibly reflecting a seasonal shift in host organisms.
Freshwater politics in Canada
\"Freshwater is in great supply across much of Canada. However, competing and changing demands on its use are leading to ever more complex political arrangements. This volume offers an integrated survey of that complexity, combining historical and contemporary cases in a conceptually-informed exploration of water politics. It offers a set of tools, frameworks, and applications that enable readers to recognize and explore the political dimensions of freshwater.
Contamination of surface, ground, and drinking water from pharmaceutical production
Low levels of pharmaceuticals are detected in surface, ground, and drinking water worldwide. Usage and incorrect disposal have been considered the major environmental sources of these microcontaminants. Recent publications, however, suggest that wastewater from drug production can potentially be a source of much higher concentrations in certain locations. The present study investigated the environmental fate of active pharmaceutical ingredients in a major production area for the global bulk drug market. Water samples were taken from a common effluent treatment plant near Hyderabad, India, which receives process water from approximately 90 bulk drug manufacturers. Surface water was analyzed from the recipient stream and from two lakes that are not contaminated by the treatment plant. Water samples were also taken from wells in six nearby villages. The samples were analyzed for the presence of 12 pharmaceuticals with liquid chromatography‐mass spectrometry. All wells were determined to be contaminated with drugs. Ciprofloxacin, enoxacin, cetirizine, terbinafine, and citalopram were detected at more than 1 μg/L in several wells. Very high concentrations of ciprofloxacin (14 mg/L) and cetirizine (2.1 mg/L) were found in the effluent of the treatment plant, together with high concentrations of seven additional pharmaceuticals. Very high concentrations of ciprofloxacin (up to 6.5 mg/L), cetirizine (up to 1.2 mg/L), norfloxacin (up to 0.52 mg/L), and enoxacin (up to 0.16 mg/L) were also detected in the two lakes, which clearly shows that the investigated area has additional environmental sources of insufficiently treated industrial waste. Thus, insufficient wastewater management in one of the world's largest centers for bulk drug production leads to unprecedented drug contamination of surface, ground, and drinking water. This raises serious concerns regarding the development of antibiotic resistance, and it creates a major challenge for producers and regulatory agencies to improve the situation.